
1

Edition 04/2022

Products need Labeling

Programming a cab Printer

JScript

2

Copyright

This documentation as well as translation hereof are property of cab Produkttechnik GmbH & Co. KG. The
replication, conversion, duplication or divulgement of the whole manual or parts of it for other intentions than
its original intended purpose demand the previous written authorization by cab.

Editor

Regardingquestionsor commentspleasecontact cabProdukttechnikGmbH&Co. KG.

Topicality

Due to the constant further development of our products discrepancies between documentation and product
can occur. Please check www.cab.de for the latest update.

Terms and conditions

Deliveries and performances are effected under the General conditions of sale of cab.

Edition

04/2022

https://www.cab.de

Contents 3

Contents

1 Basics 8
1.1 Why JScript . 8
1.2 How to read this manual . 8
1.3 Download the code samples and cabLabel S3 . 9
1.4 What else to read . 9
1.5 JScript-enabled devices since 1995 . 9
1.6 Editing JScript files under Windows . 10
1.7 How we support you . 11

2 Communication with the printer 12
2.1 Use USB or SD-card storage media on printer . 12
2.2 Appoint a memory type as default memory . 12
2.3 Create the appropriate label jobs . 12
2.4 Call up label jobs at the printer . 14
2.5 Do not use the USB cable . 14
2.6 Connection via a TCP/IP network . 14
2.7 FTP for file transfer . 14
2.8 FTP for immediate printing without saving . 15
2.9 Communication in Production . 16
2.10 Direct communication on port 9100 . 16
2.11 Accessing a file server with WebDAV . 17
2.12 Industry 4.0 with OPC UA . 18

3 Basic structure of JScript 19
3.1 JScript as direct communication with the printer . 19
3.2 Lower case letters . 19
3.3 Capital letters . 19
3.4 Special functions . 20
3.5 Comments . 21
3.6 Make JScript Code Readable . 21
3.7 Escape commands . 22
3.8 abc Programming . 22

4 The typical structure of a label 24
4.1 A simple minimalistic label . 24
4.2 Useful template for a blank label . 25

4.2.1 Units of measurement . 25
4.2.2 Job start . 26
4.2.3 Size of label . 26
4.2.4 Speed and heat . 27
4.2.5 Using options . 28

4.3 Static objects . 28
4.3.1 Texts . 28
4.3.2 Using your own fonts . 30
4.3.3 Textboxes . 35
4.3.4 Hyphenation in Text Boxes . 36
4.3.5 Barcodes . 37
4.3.6 Images . 39

4 Contents

4.3.7 Images as embedded ASCII data . 41
4.3.8 Graphical elements (circles, lines and rectangles) . 43

4.4 Design the label dynamically . 45
4.4.1 Referencing content . 45
4.4.2 Reusing content . 46
4.4.3 Calling templates from storage . 47
4.4.4 Fill in new content . 48

4.5 Summary or J SHOW BIG A . 50

5 Special functions 51
5.1 Syntax of the special functions . 51

5.1.1 Include in square brackets . 51
5.1.2 Pass function parameters . 51
5.1.3 Use field names as special function . 52
5.1.4 No nestings . 52

5.2 Hiding elements . 53
5.2.1 Conditional visibility . 53

5.3 Ask the operator . 55
5.4 Dynamic date and time functions . 56
5.5 Adding a time offset . 56
5.6 Using counter . 56
5.7 Remember the counter value . 57
5.8 Calculations and comparisons . 57
5.9 Format strings or numbers . 59
5.10 Avoid rounding errors . 60
5.11 Inserting UNICODE characters . 61
5.12 Single buffer mode . 62

6 Using the different memories 64
6.1 The useful user memory . 64
6.2 The “I have finished!” info memory . 64
6.3 Using a file to store a value . 64

6.3.1 Using a TMP file . 65
6.3.2 Filling a LOG file . 65

7 The most common Escape commands 67
7.1 Interrupt the printing process (Esc p1 and Esc p0) . 67
7.2 When nothing works at all (Esc t and Esc ! Esc !) . 67
7.3 Query status (Esc s and Esc z) . 68
7.4 Reading from the information memory (Esc i) . 68
7.5 Start signal (Esc g) . 69
7.6 Trigger the I/O interface (Esc xin) . 69
7.7 Reading the I/O interface (Esc xout) . 70
7.8 Outlook: Printer control in the industry 4.0 age with OPC UA . 70

8 Access to databases 72
8.1 Connecting to the cab Windows service . 72
8.2 Stand alone sulution: using a local SQLite file . 72
8.3 Get a value from a database . 73
8.4 Splitting the database response . 73

Contents 5

8.5 Write back to a database . 75

9 More than just printing 76
9.1 Dispensing labels . 76
9.2 Tear-off mode . 76
9.3 Automatic retraction . 77
9.4 Ribbonsaver . 77
9.5 Cutting Labels . 77
9.6 Using an Applicator . 78

9.6.1 Set parameters for an applicator . 79
9.6.2 Print and apply or apply and print? . 79

10 Diagnostic options 80
10.1 Monitor Mode . 80
10.2 Log incoming data into a file . 80
10.3 Preview a label without printing . 81

11 Barcodes in global trade 82
11.1 Data integraty for barcodes . 82

11.1.1 Error detection by a check digit shown on the GTIN . 82
11.1.2 Error correction in QR and Datamatrix codes with the Reed-Solomonmethod 84

11.2 GS1 Data Structure . 85
11.2.1 Floating numbers as a content of an AI . 86

11.3 Barcode types for GS1 data . 90

12 Best practice examples 91
12.1 Single digit month, shift identification and daily counter reset 91
12.2 Print vouchers . 93
12.3 Printing data from a CSV file . 97

13 Advanced BASIC Compiler 100
13.1 This is not a BASIC manual . 100
13.2 Either JScript or abc . 100
13.3 Comments in abc . 100
13.4 The PRINT command . 101
13.5 Conditional tasks and jumps . 101

13.5.1 IF–THEN–ELSIF–ELSE–ENDIF . 101
13.5.2 GOTO and GOSUB . 102

13.6 Loops . 103
13.6.1 FOR–NEXT . 103
13.6.2 DO–LOOP . 106
13.6.3 WHILE–WEND . 106
13.6.4 REPEAT–UNTIL . 106

13.7 Subroutines (functions) . 107
13.7.1 Using a pointer to an array as an argument of a subroutine 111

13.8 String operations . 111
13.8.1 num = SPLIT(string$, return_array$(), dividing_character$) 112
13.8.2 num = TOKEN(string$, array$(), separator$) . 112
13.8.3 Handling sub strings with LEFT$, MID$ and RIGHT$. 112
13.8.4 pos = INSTR(string$, search_pattern$) . 114
13.8.5 Sweeping blank spaces at the beginning and end of a string 114

6 Contents

13.8.6 More commands to manipulate strings . 114
13.9 Read and write on the interfaces . 115
13.10 Creating a parser . 116
13.11Writing onto the graphical display . 117

13.11.1 Example abc program: global climate warming up . 118
13.11.2 Rectangles and lines on the display . 120
13.11.3 Example: a transparent onscreen logo . 122
13.11.4 Interact with the user by catching touches . 124

13.12 A permanent abc loop . 125
13.13 The interaction between JScript and abc . 125

13.13.1 Just a dream . 126
13.13.2 The correct way to interact (JGET$ and JPUT) . 126

13.14 Error handling . 127

14 Appendix 129
14.1 A typical JScript label in detail . 129
14.2 Short view on special functions . 135
14.3 Error codes for the Esc s command . 138

15 Solutions to some exercises 139

List of Tables 7

List of Tables

4.1 Format text boxes using theW command . 36
7.1 Trigger I/O signals Esc xin . 70
9.1 The cut command C with its options . 78
9.2 Set parameters for an applicator . 79
11.1 Error Correction Levels of a QR Code . 85
11.2 AI starting with 0, 1 or 2 of the GS1 data structure . 86
13.1 Logical operators in abc . 101
14.1 S = Label Size . 130
14.2 H = Setting heat level and printing speed . 130
14.3 O = setting options . 131
14.4 T = Text . 132
14.5 W = Textbox . 132
14.6 B = Barcode . 133
14.7 I = (auto loaded) Images . 133
14.8 G. . . ;L: = Lines . 134
14.9 G. . . ;R: = Rectangles . 134
14.10G. . . ;C: = Circles . 134
14.11 Date functions . 135
14.12 Time functions . 136
14.13 Math functions . 136
14.14 User query in standalone operation [?:…] . 137
14.15 Error codes for the Esc s command . 138

8 1 Basics

1 Basics

You are just start reading an introduction to the JScript printer language. This document is not a complete
textbook, but should people who already have experience in the use of programming languages have a fast
overview of themost important basics and commands of the JScript language. At the end of the document,
you will also see “abc”, the Advanced BASIC Compiler. It is available in nearly all cab printers1 and allows a high
degree of automation without that a separate PC would be required.

1.1 Why JScript

JScript offers very extensive possibilities for direct programming the cab printer.

JScript is system-independent. Nomatter if your JScript file is storedonanAppleMacintosh, a Linux computer,
a Windows PC, an AS400 or a PLC, the cab printers understand all common formats.2

JScript allows access to databases. And this both online and also offline. For online access to databases,
the printer needs the Software cab Database Connector, which is available as a service on a Windows
system. This can, but does not have to, be the same PC or server on which the database is running. The
actual access is via OLEDB/ODBC. cab Database Connector works as an intermediary between databases
and printers. Several printers can be connected simultaneously to one installation of the cab Database
Connector. Offline the printer is able to use a SQLite database.3

JScript allows extensive calculations By embedding BASIC code, they can also be extended almost indefi-
nitely. This leads to a flexibility that is otherwise rarely found in label printers.

You can secure processes. Entries can be checked by the printer. Data can be transferred directly, signed and
encrypted from systems like SAP, so that faulty operator inputs (e.g. – typing errors) are avoided. If labels
are printed, this information can securely be fed back to your system in order to guarantee a complete
documentation of created labels. All this directly through the printer.

1.2 How to read this manual

This guide is a quick start into JScript programming.� Read everything that helps you and skip parts you do
not need. This is not a comprehensive textbook. Much will only shown shortened.

As manufacturer we offer you an extensive training program for our printers. This also includes a training course
for direct programming of our label printer.

This guide summarizes the most important points of the one-day JScript programming training session and can
be used without attending the training for self-study.

The dates of the JScript workshops can be found on the Internet:
https://www.cab.de/en/info/trainings/overview/#jscript

We are aware that it will not be possible for everyone to work on an individual training, be it in our training center
in Karlsruhe or by one of our trainers on site. Therefore, this manual tries to to bring JScript closer to many
readers even without much previous experience. Also the specialists find answers to more complex topics, e.g.

1Only the two smallest printers Mach 1 and Mach 2 do not have an integrated Advanced BASIC compiler. They also do not process
JScript and must be operated via a Windows PC (GDI devices).

2JScript works line-oriented and accepts both a line end <CR><LF> (Microsoft Windows), <LF> (Linux) or <CR> (Apple Mac OS). However,
the format should not change within the same file.

3Prerequisite is a printer with X4 mainboard and a firmware version 5.25 or higher. New firmware can be installed on cab printers
without registration or extra costs via the cab website.

https://www.cab.de/en/info/trainings/overview/#jscript
https://www.cab.de/en/support/support-downloads/

1 Basics 9

“How do I print a hazard symbol contextually?”, which is related to the topic “conditional visibility” (it is explained
on page 53).

So don’t despair if you can’t follow every detail in this manual. As the number of pages increases, so does the
complexity and the necessary previous experience. If you get stuck in the middle of the manual, don’t worry
about it. If you make it to the summary on page 50 you have already understood the most important basics of
JScript.

1.3 Download the code samples and cabLabel S3

The listings printed here in this book are mostly attached to the PDF file. In the PDF Reader click on the indicator
of the embedded attachments (download icon with file name) and download the files from the PDF instead of
laboriously typing them. The file name of embedded attachments is displayed below the listings in light blue
font. This procedure to access the listing by click (or double-click) to save (or open) was tested with the PDF
Readers Adobe Reader DC and Sumatra PDF. Should you find out that the code examples cannot be downloaded
directly from this PDF, your reader’s JavaScript Action functions may be prohibited.

Many of our customers also use the software cabLabel S3, which comeswith our printers and is also available free
of chargeas cabLabel S3 Lite fromourwebsite. It canbeused tocreate theJScript label files.

https://www.cab.de/cablabel

This book therefore occasionally contains screenshots and hints on how cabLabel S3 can generate certain
JScript elements. A typical use case is often the creation of a layout template in cabLabel S3 Lite and the
later filling with data from the production process using the replace command (see section 4.4.4 starting with
page 48).

1.4 What else to read

�The programming manual for SQUIX, MACH 4S, EOS2/EOS5, HERMES Q, PX Q should always be within easy
reach for additional reading. The programming manual offers a complete reference of all JScript and abc
commands on over 650 pages.

You can find the manual on the cab website:
https://www.cab.de/en/programming

Both together, this document and the comprehensive reference “Programming Manual”, can help you getting
started with JScript.

1.5 JScript-enabled devices since 1995

This manual is intended for the newer devices with a mainboard of X4 Series (or newer). You can recognize these
devices by their colored touch displays, which are not built into the older models. If the control is still via keys
below the display, or is the touch display monochrome, you have a device of an older mainboard generation in
front of you.

Older devices do not support some of the commands described here in the manual. Refer to Programming
Manual for A+ and X-Series, MACH4, PX, Hermes+, Hermes C, EOS1/EOS4, which commands are also used by the
older models.

https://get.adobe.com/reader
https://www.sumatrapdfreader.org/
https://www.cab.de/cablabel
https://www.cab.de/en/programming

10 1 Basics

Apollo A Serie A+ Serie EOS 1/4 SQUIX

2011 - 2018

2006 - 2017

2001 - 2006

seit 2016

1995 - 2005

Figure 1.1: cab has been building printers that can be controlled with JScript since 1995

Since January 2020, no devices have been produced that do not have at least a mainboard of the X4 genera-
tion.

Figure 1.1 shows an example of the different series eachwith a 4 inch tabletop printer.

1995 was the birth of the first cab thermal transfer printer and at the same time the first use of JScript as printer
language. The Apollo was produced until the middle of 2005. Apollo printers had a two-line text display and four
keys for operation.

From 2001 to 2006, the A series supplemented and replaced the Apollo. A series printers, like the Apollo, only
had a text display. The four keys of the Apollo were replaced by a navigator pad, the metal housing by a more
modern housing made of industrial plastic.

In 2006, the A+ printers were the first having one identical mainboard for all printers of the series, the ”X2
board”. On its single core CPU runs a monolithic firmware. All printers of the A+ series have a Navigator Pad
(cross-shaped control button) and a graphic display. Not before 2017 the production of the A+ table printers
ended.

With the EOS we entered new territory in two aspects. The two printers EOS1 and EOS4 were the first ones
made completely out of plastic by cab as a new kind of compact industrial printers. On the other hand, the
X3 Board first offers a Linux substructure. This opened up a wide field for future enhancements to the printer
functions.

As the flagship of the next generation, the SQUIX was first sold in 2016. It’s touch display is colored and the user
interface has been completely redesigned. All models of this series, including the HERMESQ and PX Q series have
the identical X4 mainboard with a powerful processor and Linux as a substructure.

1.6 Editing JScript files under Windows

To edit the JScript files you can use any text editor, but we recommend the free editor Notepad++. This editor
allows you towork with a printer with the help of the extensionNppFTP – directly to the printer via a local network
(see section 2.6 from page 14). You can find extensions in Notepad++ via the menu item “Extensions” and install
then via “Plugin administration . . . ”.

1 Basics 11

https://notepad-plus-plus.org/

Figure 1.2: Notepad++ allows you to colorize the source code individually. Click on “Languages”, then on “Own Language define . . . ”
and “import” the one linked here as a XML file.

1.7 How we support you

The open dialogue with our customers and partners is an important part of our success. You get from cab
not only innovative marking technology for the industrial use, we also give you free access to our instructions.
Nevertheless, self-study is not always the most efficient way to a labeling solution.

Talk to us. Besides the possibility of an individual solution for training you, we also offer you the possibility
to work on your project together to plan and realize them. The direct contact to our developers, support
staff and trainers will help you to complete projects faster and more reliably – and thus will end up reducing
costs.

 00; 00REM 00// 01 02 03" 03{ 04" 04}

 ; , : + - () * /

 ABS ACOS AND ARRAYDIM ARRAYDIMENSION ARRAYSIZE AS ASC ASIN AT ATAN BEEP BELL BIN$ BIND BITBLIT BITBLIT$ BITBLT BITBLT$ BOX BREAK CASE CHR$ CIRCLE CLEAR CLOSE COLOR COLOUR COMPILE CONTINUE COS CURVE DATA DATE$ DEC DEFAULT DIM DO DOT ELSE ELSEIF ELSIF END ENDIF EOF EOR ERROR EXECUTE EXECUTE$ EXIT EXP EXPORT FI FILL FILLED FONT FOR FRAC GETBIT$ GETSCREEN$ GLOB GOSUB GOTO HEX$ IF INKEY$ INPUT INSTR INT INTERRUPT LABEL LEFT$ LEN LET LINE LOCAL LOG LOOP LOWER$ LTRIM$ MAX MID$ MIN MOD MOUSEB MOUSEBUTTON MOUSEMOD MOUSEMODIFIER MOUSEX MOUSEY NEW NEXT NOT NUMPARAM ON OPEN OR ORIGIN PAUSE PEEK PEEK$ POKE PRINT PRINTER PUTBIT PUTSCREEN RAN READ READING RECT RECTANGLE REDIM REM REPEAT RESTORE RETURN REVERSE RIGHT$ RINSTR RTRIM$ SCREEN SEEK SIG SIN SLEEP SPLIT SPLIT$ SQR SQRT STATIC STEP STR$ SUB SUBROUTINE SWITCH SYSTEM SYSTEM$ TAN TELL TEXT THEN TIME$ TO TOKEN TOKEN$ TRIANGLE TRIM$ UNTIL UPPER$ USING VAL WAIT WEND WHILE WINDOW WRITING XOR JGET$ JPUT FALSE TRUE TRANSFER
 abs acos and arraydim arraydimension arraysize as asc asin at atan beep bell bin$ bind bitblit bitblit$ bitblt bitblt$ box break case chr$ circle clear close color colour compile continue cos curve data date$ dec default dim do dot else elseif elsif end endif eof eor error execute execute$ exit exp export fi fill filled font for frac getbit$ getscreen$ glob gosub goto hex$ if inkey$ input instr int interrupt label left$ len let line local log loop lower$ ltrim$ max mid$ min mod mouseb mousebutton mousemod mousemodifier mousex mousey new next not numparam on open or origin pause peek peek$ poke print printer putbit putscreen ran read reading rect rectangle redim rem repeat restore return reverse right$ rinstr rtrim$ screen seek sig sin sleep split split$ sqr sqrt static step str$ sub subroutine switch system system$ tan tell text then time$ to token token$ triangle trim$ until upper$ using val wait wend while window writing xor jget$ jput false true transfer
 ABS ALL ALLOCATE ALTER AND ANY ARE ARRAY ARRAY_AGG AS ASENSITIVE ASYMMETRIC AT ATOMIC AUTHORIZATION AVG BEGIN BETWEEN BIGINT BINARY BLOB BOOLEAN BOTH BY CALL CALLED CARDINALITY CASCADED CASE CAST CEIL CEILING CHAR CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK CLOB CLOSE COALESCE COLLATE COLLECT COLUMN COMMIT CONDITION CONNECT CONSTRAINT CONVERT CORR CORRESPONDING COUNT COVAR_POP COVAR_SAMP CREATE CROSS CUBE CUME_DIST CURRENT CURRENT_CATALOG CURRENT_DATE CURRENT_DEFAULT_TRANSFORM_GROUP CURRENT_PATH CURRENT_ROLE CURRENT_SCHEMA CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TRANSFORM_GROUP_FOR_TYPE CURRENT_USER CURSOR CYCLE DATE DAY DAYS DEALLOCATE DEC DECIMAL DECLARE DEFAULT DELETE DENSE_RANK DEREF DESCRIBE DETERMINISTIC DISCONNECT DISTINCT DOUBLE DROP DYNAMIC EACH ELEMENT ELSE END END-EXEC ESCAPE EVERY EXCEPT EXEC EXECUTE EXISTS EXP EXTERNAL EXTRACT FALSE FETCH FILTER FIRST_VALUE FLOAT FLOOR FOR FOREIGN FOREVER FREE FROM FULL FUNCTION FUSION GET GLOBAL GRANT GROUP GROUPING HAVING HOLD HOUR HOURS IDENTITY IN INDICATOR INNER INOUT INSENSITIVE INSERT INT INTEGER INTERSECT INTERSECTION INTERVAL INTO IS JOIN KEEP LAG LANGUAGE LARGE LAST_VALUE LATERAL LEAD LEADING LEFT LIKE LIKE_REGEX LN LOCAL LOCALTIME LOCALTIMESTAMP LOWER MATCH MAX MAX_CARDINALITY MEMBER MERGE METHOD MIN MINUTE MINUTES MOD MODIFIES MODULE MONTH MULTISET NATIONAL NATURAL NCHAR NCLOB NEW NO NONE NORMALIZE NOT NTH_VALUE NTILE NULL NULLIF NUMERIC OCTET_LENGTH OCCURRENCES_REGEX OF OFFSET OLD ON ONLY OPEN OR ORDER OUT OUTER OVER OVERLAPS OVERLAY PARAMETER PARTITION PERCENT_RANK PERCENTILE_CONT PERCENTILE_DISC POSITION POSITION_REGEX POWER PRECISION PREPARE PRIMARY PROCEDURE RANGE RANK READS REAL RECURSIVE REF REFERENCES REFERENCING REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY REGR_SYY RELEASE RESULT RETURN RETURNS REVOKE RIGHT ROLLBACK ROLLUP ROW ROW_NUMBER ROWS SAVEPOINT SCOPE SCROLL SEARCH SECOND SECONDS SELECT SENSITIVE SESSION_USER SET SIMILAR SMALLINT SOME SPECIFIC SPECIFICTYPE SQLEXCEPTION SQLSTATE SQLWARNING SQRT START STATIC STDDEV_POP STDDEV_SAMP SUBMULTISET SUBSTRING SUBSTRING_REGEX SUM SYMMETRIC SYSTEM SYSTEM_USER TABLE TABLESAMPLE THEN TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TO TRAILING TRANSLATE TRANSLATE_REGEX TRANSLATION TREAT TRIGGER TRUNCATE TRIM TRIM_ARRAY TRUE UESCAPE UNION UNIQUE UNKNOWN UNNEST UPDATE UPPER USER USING VALUE VALUES VAR_POP VAR_SAMP VARBINARY VARCHAR VARYING VERSION VERSIONING VERSIONS WHEN WHENEVER WHERE WIDTH_BUCKET WINDOW WITH WITHIN WITHOUT YEAR YEARS

 00[I 01 02] 03[J: 03[D: 03[C: 04 05] 05] 05] 06B: 06G: 06I: 06T: 07 08; 08; 08; 08; 09 10 11 12[SQL: 13 14] 15<ABC> 16 17</ABC> 18[? 19 20] 21[22 23]

https://notepad-plus-plus.org/

12 2 Communication with the printer

2 Communication with the printer

Before we can turn our attention to the printer language, we need to clarify briefly how you can reproduce the
mentioned examples on a cab printer.

Here are just a few of the possibilities. There are still significantly more possibilities, but this manual should focus
on the pure concentrate printer language. For the interfaces and their optimal use please refer to the interface
manual of the respective printer model.

To actively work through this manual you only need one way to get your JScript code into the printer.
This can be done with a USB stick, witch can be useful if you still have little or no experience with computer
technology and networks. More convenient is the access via the network, but in some cases considerable prior
knowledge is required. Decide for yourself how to connect to your printer.

2.1 Use USB or SD-card storage media on printer

The easiest way is to use a storagemedium that you can read andwrite on the printer as well as on your computer,
e.g. a USBmemory stick. First format the storagemediumon the computer, so you still need to add the fourmain
directories “fonts”, “images”, Create “labels” and “misc” directly in the root directory.

If this seems too complicated, then plug in the storage medium simply freshly formatted into the cab printer. If
the printer is switched on it creates the necessary directories independently. You can use the storage medium
then after this, just plug it back into your computer and copy the JScript files on it.

2.2 Appoint a memory type as default memory

If the contents of e.g. a USBmemory stick are not immediately displayed on the printer you can switch to the
USBmemory each time you select the menu item “load label” (see figure 2.1 on page 13), or you can set USB as
default. Then the printer always searches for files in the USBmemory first. The default memory must be selected
correctly if you give the printer the command to load of a label, but do not specify the storage location itself (see
section 4.4.3 for details on page 47).

2.3 Create the appropriate label jobs

Label jobs are pure text files4 with a file extension “.lbl”. It is important that the extension is actually “.lbl”. Are you
using a Windows operating system and is the display of the file extension deactivated (for Windows the default
state), a created text file would probably have the double extension “.lbl.txt”, but which the printer cannot do
anything with.

However, before you run to buy an Apple Macintosh or a Linux PC, you can simply activate the display of the file
extension under Windows in the folder display options. How this works exactly tells you your favorite search
engine on the internet.

The text file, which ends not on “.txt” but correctly on “.lbl” must be placed in the correct subdirectory of the
storage medium. It is the “labels” directory.

The two images2.1 and2.2 show thisbehaviorof theprinter for the twocopied files “richtig.lbl” and “falsch.lbl.txt”.

4“Pure text files” are files that consist of pure 8-bit text, no files fromWYSIWYG editors like Microsoft Word or OpenOffice Writer. For
professionals: use UTF-8 encoded files without BOM.

https://de.wikipedia.org/wiki/UTF-8
https://de.wikipedia.org/wiki/Byte_Order_Mark

2 Communication with the printer 13

Figure 2.1: Via the gray gear wheel symbol and the blue memory stick button you get to the menu “Storage”. Here you can see the data
stored in the subfolder “labels” to load copied JScript label files.

Figure 2.2: There are two files on the disk. The file richtig.lbl can also be selected for printing. The file falsch.lbl.txt however has the
ending .txt, which is for a cab printer not accepted as label file (see figure 2.1). Even if the file saved in your Windows operating
system is displayed as “falsch.lbl” – do not let Microsoft make fun of you! The printout has been created by the “Print file list”
menu item in the “Storage” menu.

14 2 Communication with the printer

2.4 Call up label jobs at the printer

On the printer, press the gray button with the gear wheel (Settings menu). You will get into a menu, where you
can now select the blue symbol with the memory stick. In the following menu you can load a label with “Load
label”, it will display a list of all files located in the directory “labels” and end on “.lbl”.

If the file you copied there does not appear, please check the correct file name spelling including the extension.
Using the menu item “Print file list” you can also print a listing of all files, output directly to the printer. However,
make sure that the material is sufficiently wide in the printer.

2.5 Do not use the USB cable

To transfer pure programming data via USB cable requires additional software. It is therefore not advisable
to start with the printer in this way to be addressed. USB connection can be used when you only want to use
labeling software or printing with the Windows driver.

2.6 Connection via a TCP/IP network

You are familiar with TCP/IP networks, even if you have never read the term. TCP/IP is the protocol on which
the Internet is based. It describes the connection technology between individual devices on the network.
This can be your PC, but also hubs, switches, routers, cell towers and of course cab printers are “network
devices”.

Each network device has a unique name (experts call it MAC address) and an IP address. The IP address allows
to address the device in the network.

When you press the gray gear icon on the printer’s main screen you get to the menu “Settings” (see Figure 2.1,
second illustration from left). There you will find a yellow info icon in the upper left corner that shows you infor-
mation about the printer. Amongmany other information you can see the IP address of the printer. Let’s assume
that the printer shows “192.168.10.1” as the IP address. IP addresses usually consist of four numbers, each with a
dot in between. Remember these numbers and enter them in your favorite Internet browser, if this device (means
the PC on which the Browser is running) is connected to the printer via the network.

If your browser is connected to the printer, you will see, after entering the IP address of the printer, an overview
page of the printer. On the left side of this page you will find a live view of the printer’s touch screen, which you
can access with the mouse to operate the printer. Just like an “Internet remote control” already installed in the
printer. If you are looking for a username and a password, both are “admin”, if you have not changed this in the
printer settings (which you should do for security reasons).

2.7 FTP for file transfer

A visual remote control is handy – but you can’t use it to learn JScript. Instead of the browser, open a filemanager
(or an FTP software) and enter the following line:

ftp://ftpcard:card@192.168.10.1

Your file manager should now show you the printer’s storage. It will always display the storage that you have
selected as default in the “Storage”menu. So leave your USBmemory stick in the printer and select “USB” as stan-
dard. You can then send your label file via FTP (you can find an explanationof the protocol online in theWikipedia).
This way you canwrite files to your USB device without constantly having to unplug it.

https://de.wikipedia.org/wiki/Media_Access_Control
https://de.wikipedia.org/wiki/IP-Adresse
ftp://ftpcard:card@192.168.10.1
https://en.wikipedia.org/wiki/File_Transfer_Protocol

2 Communication with the printer 15

You can then access the files with the extension “.lbl”, which you can find in the folder “labels”, via the menu item
“Load label” and execute the JScript code.

�Advice: Connect a USB keyboard to the second USB plug on the printer. By pressing F2 you will directly get
into the Load label dialog.

Exercise 2.1 Your first handmade label

Use a plain text editor (e.g. Notepad, but not MicrosoftWord or OpenOffice Writer) and enter the following:
the lowercase letter f and then the ←↩ key. You should add a line with the letters f and below in
another empty line the Cursor flashes. Now write this file as “formfeed.lbl” via an FTP connection to the
“labels” directory. Then select the file in the submenu item “Load label” of the printer.
If you have done everything correctly, the printer will print (move) exactly one empty label. The line with
the lower case letter f causes a Label feed, or “form feed”. If you click the green symbol with the down
arrow in the main menu the printer should do exactly the samemove.

2.8 FTP for immediate printing without saving

Instead of copying the files via FTP to the printer and then printing them via calling up the printer’s menu you
can also use a shortcut. The printer allows besides the FTP user name “ftpcard” also the user name “ftpprint”
with the password “print”.

ftp://ftpprint:print@192.168.10.1

The big difference is that the printer will print all files you send via the special upload user “ftpprint” to the
printer, but executes them immediately without saving them to the storage. So the files are just interpreted
as JScript code, and are not placed into the “labels” folder. With this special procedure the file name includ-
ing the file extension is not relevant. As an exception, you can even use the file “falsch.lbl.txt” to bring it to
execution.

However, the FTP protocol was not developed for this purpose. An FTP software therefore assumes that
an uploaded file will then be stored in the FTP directory of the printer and exists there. However, you will
never be able to download as a user “ftpprint” from the printer, and also folders can neither be called nor
created.

Depending on the software you use for the file upload, it can lead to confusion sometimes. If in doubt, use a
tolerant software or do not use this shortcut to print the JScript files directly.

Exercise 2.2 Shortcut using the FTP user name ftpprint

Take the file created in the previous exercise and load it again via FTP to the printer. This time, however,
choose the user name “ftpprint” (and the password “print”).

The printer should now immediately perform a feed.

ftp://ftpprint:print@192.168.10.1

16 2 Communication with the printer

2.9 Communication in Production

In the following three more common methods we will show how to install a cab printer into a production
environment. We start with the the most obvious way to send JScript code directly over the network and to
receive answers from the printer.

After that we will show how to connect the printer to a file server, which then makes the label jobs available. If
there are several printers within production, this is an excellent opportunity for keeping all printers always on the
same level by simply setting the file server which is then accessed by all printers.

Finally OPC UA shall be mentioned briefly. We will not discuss this protocol in detail, but here lies a large part of
the future, which is to be “Industry 4.0”.

2.10 Direct communication on port 9100

The cab printer allows direct TCP/IP communication on port 9100. If this doesn’t mean anything to you, just skip
this section. For readers with a lot of experience in network technology this function of the printer should not be
concealed. Otherwise come with the two previously mentioned methods (use a storage medium or transfer via
FTP) should be enough to work through this manual.

If you are very familiar with network technology you can open a Telnet session on port 9100 of the printer and
enter the JScript lines there directly. Or you copy from the instructions into the session window. Under Windows,
a Telnet client is available, but hidden in the Windows feature configuration. You must therefore either activate
the Telnet function of Microsoft Windows or use a foreign software like PuTTY.

If you are using Windows 10 and want to feel like a hacker please right-click on the Windows icon in the lower left
corner and select “Windows PowerShell (Administrator)”. In the Windows PowerShell window enter the following
command:

Dism /online /Enable-Feature /FeatureName:TelnetClient /All

After that you can close the PowerShell window (use the command “exit”) and open it againwithout administrator
rights. Let us guess your printer has the IP address 192.168.10.1, enter the following command to start a telnet
session:

telnet 192.168.10.1 9100

From now on, your keyboard entries are no longer displayed, but directly transfered via the network to port
9100 of your printer. The answers of the printer appear on your window. Try it out and type into the Telnet
session the keys Esc and s . The printer should answer with a string that looks something like this: “Y-
000000N”.

Exercise 2.3 Only for experts

Connect to port 9100 of your printer by using the Telnet function of your operating systemor use a software
like PuTTY. In the terminal session with the printer, press the keys Esc and s . Does the printer answer
you? Now enter successively the key sequence Esc , ! , Esc and ! . If you have done everything
correctly, the printer should switch off and restart (reboot). Your session will then be terminated inevitably.

https://de.wikipedia.org/wiki/Telnet
https://docs.microsoft.com/de-de/windows-hardware/manufacture/desktop/enable-or-disable-windows-features-using-dism
https://docs.microsoft.com/de-de/windows-hardware/manufacture/desktop/enable-or-disable-windows-features-using-dism
https://de.wikipedia.org/wiki/PuTTY

2 Communication with the printer 17

Figure 2.3: The Telnet client PuTTY offers a comfortable way to direct connection to the printer. Select RAW as connection type, the IP
address of your printer and port 9100 (not 23). You can use the Save settings also for later use.

2.11 Accessing a file server with WebDAV

The WebDAV protocol has been developed for a long time, theWeb-based Distributed Authoring and Versioning
(see Wikipedia).

This is not intended to explain how to set up a WebDAV server, but is the job of the administrators, who are
responsible for the provision of data in Corporate network with security. It shall only be briefly explained what
advantage it brings to connect the printers via the WebDAV function.

If your printer has no function to use an external WebDAV server as a data source your firmware is probably not up
to the latest version. �First with firmware 5.33WebDAVwas added to the cab printers. To update the firmware
of your printer to the latest, there are two possibilities. The easiest way is to use the web interface by entering the
printer’s IP address in the browser, and there use the “help” menu. In the help menu you can find a routine to
check if the printer’s firmware is still up-to-date. If the firmware of the printer does not correspond to the latest
version, the routine offers this directly to correct. Just follow the instructions.

The option described above requires an access to the cab servers in the Internet. If this is not possible from
the printer, you can download the current firmware also always from the website www.cab.de to your PC and
then upload it with the appropriate firmware updater software to the printer (if the printer is not connected
to a network, you can load the Update also via a USBmemory stick or via a USB cable from a Windows com-
puter).

To useWebDAV as a storage location, youmust activate the option in the Storagemenu (see figure 2.1 on page 13).
There is the menu item “default memory”, where you must first select WebDAV. If WebDAV is is selected, further
menu items appear, with which you can change the address of the WebDAV server. And you can enter the user
name and password. If you search for a file and click on “Load label”, the label will be loaded by the printer from
the WebDAV server and the files will be downloaded from the subdirectory “labels” on the WebDAV store for
printing. The WebDAV storage then works as if the files were stored on the internal memory (IFFS) or a storage
medium on the printer (USBmemory stick or SD memory card). Multiple printers can share one WebDAV server
at the same time. A big benefit if you have to distribute label files to a lot of printers, being sure that all will access
the same actual version of your files.

https://en.wikipedia.org/wiki/WebDAV
https://www.cab.de/en

18 2 Communication with the printer

2.12 Industry 4.0 with OPC UA

It is still more a marketing slogan, “we are in the industry 4.0 age”, but what does this mean? The very latest
industrial revolution connects machines intelligently. In this “Internet of Things”, standards are needed with
which the individual devices/things can communicate with each other. A mature standard is the Open Platform
Communications standard. Based on this older standard the next generation is OPC Unified Architecture,
OPC UA.

Since this is a standardized approach to communication, it can be assumed thatmachine control systems (PLC) of
variousmanufacturers shouldall have theability touseOPCUA tocommunicatewitha cabprinter.

The big advantage is certainly the standardization, so that the Integration of a device like a cabprinter is faster than
if youhave tocreate the interfaceeach timenew fromscratchand implement it in thecontroller.

But an OPC UA connection has other advantages as well. As a modern standard, OPC UA is secure and scalable.
This means that you can communicate between individual devices on a small scale as well as globally with a
connection to a cloud - all defined in the standard. All this with the latest encryption technology, OPC UA is
secured and controlled in access.

A small overview of the possibilities provided by cab printers (OPC UA speaks here of an information model) can
be found on our website:

https://www.cab.de/en/news/news/opcua/

The OPC UA standard allows observing a variable, e.g. the remaining amount of thermal transfer foil on the
printer, in a simple way from amachine control system. The advantage of monitoring with OPC UA is that the
values are subscribed from the printer, correctly the printer’s build-in OPCUAServer. If a value changes the printer
automatically informs the subscriber. Man does not have to poll the status of the printer in a continuous loop,
but is informed by the printer about status changes. A much lower network load.

In addition, many things can be done via “methods”. This way it is not even necessary to learn JScript anymore.
A label layout can be created using the cabLabel software and amethod provided for loading and printing a label
format file do the rest. Fields on the label are provided automatically as variables in the OPC UA information
model and can be specifically changed before a label is printed.

Thus complex tasks such as the use of layout templates and then filling it with data from the production process
without JScript knowledge is possible. But please do not put this manual aside to concentrate from now on only
on OPC UA. With JScript all cab printers still have a very powerful direct access, mastering it will pay off in any
case.

https://de.wikipedia.org/wiki/Open_Platform_Communications
https://de.wikipedia.org/wiki/Open_Platform_Communications
https://de.wikipedia.org/wiki/OPC_Unified_Architecture
https://www.cab.de/en/news/news/opcua/

3 Basic structure of JScript 19

3 Basic structure of JScript

3.1 JScript as direct communication with the printer

With JScript you can communicate directly with a cab printer. The language works line-oriented as a stream of
bytes (8-bit data stream). Each line must be terminated with a <CR> or <LF> or both.5 Only when a line is finished
it is evaluated.

If the JScript interpreter has received a complete line, the first letter of this line is examinedmore closely. The
letters are case sensitive. The letter determines which command should be executed in the printer. Lower and
upper case letters have differentmeanings. The rest of the line are the parameters for the command, e.g. position
and size of a graphic or the name of a TrueType font to be loaded.

3.2 Lower case letters

Lower case letters usually refer to global settings that affect the printer per se and are not limited to the currently
active label.

However, if the printer is switched off, it loses the data specified by lower case properties or settings. At the next
start, the printer settings are taken from the printer’s internal default values that can be changed via the menu
options on the printer.

Example: The letter “f” triggers a label feed (formfeed). This corresponds to pressing the green symbol on the
printer.

f

As another example, we can use the lowercase letter “t” to create a test print.

t

�Please note that the lines must be terminated with a <CR> or <LF> or both together. For the sake of easy
readability, we have omitted the representation here. You can create a <CR> by pressing the ←↩ key (line
break).

3.3 Capital letters

Capital letters always refer to the label currently in memory. The capital letter J starts a new label (job start).
This commandmust be the first capital letter command, otherwise an error message will be displayed on the
printer.

With the “A” command (quantity) the internal creation is stopped and a corresponding number of labels is
printed. After that, a label to be newly designedmust first be started again with “J” before other capital letters
are accepted.

A typical label could look something like this.

5<CR> and <LF> stands for the two ASCII characters Carriage Return and Line Feed. In most text editors these are normally not directly
visible. Special ASCII editors (like Notepad++, Microsoft’s Visual Studio Code or Github’s Atom Editor) can display them. Make sure
to always have an end of line at the end of a JScript file. Otherwise, the last line may not be processed and an error message may
appear at the printer if JScript data is sent again (which then mixes with the unfinished line to form a code that is incomprehensible
to the printer).

https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://atom.io/

20 3 Basic structure of JScript

1 J
2 S 0, 0, 68, 71, 100
3 T 20, 20, 0, 3, 10;Yummy Joghurt
4 B 20, 30, 0, EAN13, SC2;456712349876
5 A 1

In theexampleabove yousee thecommands “J”, “S”, “T”, “B” and “A” in the first positionof the lines.

You define a new job (J = job start),
define the label size (S = page size),
write a text (T = text)
and a barcode on the label (B = barcode).
One copy is printed (A = number).

Behind the commandcharacter, as shown in theexample, therearemore specifications. Theseare theparameters
of the commands, which will be discussed later in this manual.

3.4 Special functions

Special functionsareusedwithin thecontentof a text. Theyareput in squarebrackets.

Example:

1 J
2 S 0, 0, 68, 71, 100
3 T 20, 20, 0, 3, 5;Bottled on:
4 T 20, 30, 0, 5, 8;[DATE]
5 A 1

In the example two texts are placed on the label. The second text contains the special command [DATE]. Here
the printer inserts the current date.

Within the square brackets is either the function name, which is case-sensitive, or a reference, i.e. a field name. A
function name can, but need not, be followed by further parameters, which are separated from the function
name by a colon and from each other by commas.

A special function with arguments can look like this:

1 J
2 S 0, 0, 68, 71, 100
3 T 20, 20, 0, 3, 5;Best before:
4 T 20, 30, 0, 5, 8;[MONTH02:0,6]/[YYYY:0,6]
5 A 1

In line 4, arguments are attached to the special command. Their exact meaning is described in a later chapter. In
this example, they cause a date offset by 0 days and 6 months.

The chapter 5 starting on page 51 deals with the topic in detail and also gives examples of how you can use
special functions to insert, for example, user queries, counters or a calculated date.

https://de.wikipedia.org/wiki/Case_sensitivity

3 Basic structure of JScript 21

3.5 Comments

A comment line starts with a semicolon as command character (first character of the line). After that any
content can follow, which is evaluated as comment and is not executed. See listing 3.1 line 2, 4, 6 and 8 as an
example.

1 J
2 ; define page size
3 S 0, 0, 68, 71, 100
4 ; fixed text
5 T 20, 20, 0, 3, 5;best before:
6 ; the printer calculate a date with 6 month shift
7 T 20, 30, 0, 5, 8;[MONTH02:0,6]/[YYYY:0,6]
8 ; print one label
9 A 1

Listing 3.1: Comment lines start with a semicolon

3.6 Make JScript Code Readable (Source Code Formatting Rules)

JScript is designed tobe read andunderstoodquickly by humans. For this reason, JScript has beendesigned from
the beginning to be as tolerant as possible to spaces and blank lines. Use this freedom tomake your self-created
code readable so that you (or another person) canmaintain the codemore easily later.

There are no design rules for this. However, JScript is based on the following rules, which you must fol-
low:

1. Each line contains exactly one command as first character of the line.
2. Each line must be terminated with an end-of-line character (<CR>, <LF> or both).
3. Blank lines are ignored, any number of blank lines can be inserted.
4. After the command (first character of the line) and after a comma, any number of blank lines are allowed.

This does not apply to special commands.
5. After the semicolon that follows the parameters, the content begins immediately. Blanks become part of

the content here!
6. Comments are allowed as comment lines, starting with a semicolon.

In order to make the code especially readable, the following conventions are followed in this manual wherever
possible, in addition to the JScript specifications.

• Comments are always before the content to which they refer.
• If a comment refers to several lines (JScript commands), an empty line is inserted after the last command
line.

• Each comma separating parameter is followed by at least one space.
• Within a command, all lines are filled up with additional spaces after a comma so that the comma is below
the comma in lines with the same command.6

• The parameters for the position of the reference point and the angle are aligned with each other across
commands (applies to the T, B, I and G command lines).

• A command character is followed either directly by the field name (with colon and semicolon) or at least
one space.

6In your editor, use a non-proportional font in order to arrange the codes according to the conventions.

J
; define page size
S 0, 0, 68, 71, 100
; fixed text
T 20, 20, 0, 3, 5;best before:
; the printer calculate a date with 6 month shift
T 20, 30, 0, 5, 8;[MONTH02:0,6]/[YYYY:0,6]
; print one label
A 1

22 3 Basic structure of JScript

3.7 Escape commands

JScript was designed so that a simple ASCII text editor is sufficient to programmost labels. However, labels do
not always consist only of text that can be created with simple editors, but in some cases graphics/logos must
be transferred to the printer. In order to be able to communicate quickly with the printer without confusing it,
an additional ASCII special character has been allowed, character number 27, also known as escape character,
abbreviated as Esc .

Tip: If you use the editor Notepad++7 you can insert an Esc character simply by using the key combination
Shift ⇑ and Esc .

It is possible at any time during communication with the printer to send the escape commands, which are
immediately processed without waiting for the end of the line.

Escape commands start with the ASCII character Esc , decimal 27, hexadecimal 1B16. This is followed by at least
one more character, e.g. “t”. Together they form the escape command, which is cut out of the rest of the JScript
code.

Escape commands do not have to be embedded in JScript, they can also be sent separately to the printer via
another interface. For example, JScript data can be transmitted via TCP/IP, while a PLC can query the status via
RS232 using Escape commands.

Sending the character string Esc p1 to one of the printer’s interfaces, for example, corresponds to pressing the
Pause key on the printer. With Esc p0 you would end the pause again so that the printer continues its work. A
list of the most important ESC commands can be found starting on page 67, all commands are included in the
programming manual which you can download from the cab web page.

3.8 abc Programming

If the possibilities of JScript are not sufficient, you can also use the integrated BASIC. The cab printer has an
Advanced BASIC compiler (“abc”) built into the firmware, which compiles the embedded code and executes it
independently from the JScript interpreter.

This manual here is mainly about JScript. Advanced BASIC is covered in a separate chapter starting on page
100. However, you should already have some experience with the BASIC language. For normal printer use, you
can work without BASIC, because even calculations can be performed directly in JScript, as will be explained in
detail in later chapters.

7The editor Notepad++ can be used free of charge under MicrosoftWindows. It is a powerful open source editor and can be downloaded
from the website www.notepad-plus-plus.org.

https://www.cab.de/programmierung
www.notepad-plus-plus.org

3 Basic structure of JScript 23

Figure 3.1: The result of the Advanced BASIC program from listing 3.2

1 <ABC>
2 PRINT "m m"
3 PRINT "J Flower Power"
4 PRINT "S l1; 0, 0, 68, 71, 100"
5 PRINT "H 25"
6 PRINT "O R"
7 PRINT "G 25, 24, 270;L: 40, 2, r, r"
8 PRINT "G 25, 64, 45;L: 30, 2, r, r [S:60,0,45]"
9 FOR angle = 0 TO 355 STEP 5

10 PRINT "G 25, 24, ", angle, ";L: 20, 0.25, r, a"
11 NEXT
12 PRINT "G 75, 24, 270;L: 40, 2, r, r"
13 PRINT "G 75, 64, 45;L: 30, 2, r, r [S:60,0,45]"
14 FOR angle = 0 TO 330 STEP 30
15 PRINT "G 75, 24, ", angle, ";C: 20, 5, 5 [S:25,50,100]"
16 PRINT "G 75, 24, ", angle, ";C: 20, 5, 0.25"
17 NEXT
18 PRINT "A 1"
19 </ABC>

Listing 3.2: Example for the use of BASIC

<ABC>
PRINT "m m"
PRINT "J Flower Power"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 25"
PRINT "O R"
PRINT "G 25, 24, 270;L: 40, 2, r, r"
PRINT "G 25, 64, 45;L: 30, 2, r, r [S:60,0,45]"
FOR angle = 0 TO 355 STEP 5
 PRINT "G 25, 24, ", angle, ";L: 20, 0.25, r, a"
NEXT
PRINT "G 75, 24, 270;L: 40, 2, r, r"
PRINT "G 75, 64, 45;L: 30, 2, r, r [S:60,0,45]"
FOR angle = 0 TO 330 STEP 30
 PRINT "G 75, 24, ", angle, ";C: 20, 5, 5 [S:25,50,100]"
 PRINT "G 75, 24, ", angle, ";C: 20, 5, 0.25"
NEXT
PRINT "A 1"
</ABC>

24 4 The typical structure of a label

4 The typical structure of a label

4.1 A simple minimalistic label

100 mm

68 mm
71 mm

Figure 4.1: Dimensions of the label from listing 4.1

Theminimal label consistsof three lines (don’t forget<CR>at theendof the line!) and looks like this:

1 J
2 S 0, 0, 68, 71, 100
3 A 1

Listing 4.1: Formfeed Deluxe

The label is startedwith “J” (JobStart). Then “S” is used todetermine the label size (Size).

If the label is shifted from 0mm to the right and 0 mm down, a 68 mm long label is printed. Together with the
3 mm gap, the distance from the beginning of the label to the beginning of the next label is 71 mm. The label is
100 mmwide (see illustration 4.1).

Thus the command has the following structure:
S displacement to the right, displacement downwards, height, height + gap, width

A detailed description of the most important commands can be found in the Appendix. All commands can be
found in the comprehensive programming guide for JScript.

The printer can use millimeters or inches as the unit of measurement, depending on the selected country setting
in the printer settings. Except for the USA country setting, millimeters is assumed.

One copy is printed, “A” stands for number and simultaneously terminates label creation in the printer mem-
ory.

Before the “A” command, the contents (texts, barcodes, graphics, etc.) would have to be inserted, because a
blank label alone is not very useful.

https://www.cab.de/programmierung

4 The typical structure of a label 25

Exercise 4.1 Three at one stroke � S. 139

Measure the size of the labels in your printer. Then create a JScript file “ffdeluxe.lbl” similar to listing 4.1.
However, three labels should be created. What happens during execution? Are there three labels each?

Exercise 4.2 Error in label size � S. 139

Increase the values for the label height and the distance from the start of the label to the next label start
by 20 mm each. What happens now? Can you explain the behavior?

4.2 Useful template for a blank label

However, it is better touse the followingextended template for a label in JScript (listing4.2).

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5 O R
6 A 1

Listing 4.2: Aminimal label with the most important information

Let’s take a closer look at the individual lines.

4.2.1 Units of measurement

You should use the line

m m

for the use of metric units (SI base unit Millimeter) or

m i

for the Anglo-American unit use inches (Imperial or Historical units) to not be surprised by the printer’s country
settings. If “USA” is selected as country, the unit of measurement is set to inches by default. All other country
settings set millimeters as the unit of measurement. The “m” command permanently overwrites this preset until
the next restart of the printer.

�Otherprinter languagesoftenworkwith thedotsof theprint bar forpositionor length specifications. How-
ever, JScript always uses the selectedmeasurement system (millimeters or inches), so your data does not
dependonthe resolutionof theprintbar. Abigadvantageof thecabprinter language.

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
O R
A 1

https://https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/Imperial_and_US_customary_measurement_systems

26 4 The typical structure of a label

100 mm

63 mm

35 mm

8 mm

9 mm

50 mm53 mm

Figure 4.2: A decorative label that should only be printed in the light background area. By cleverly defining the page size in the JScript
code, the printer will report an error if, for example, a barcode gets past from the permitted area.

4.2.2 Job start

With “J” the description of the label is started. When a “J” command is received, the printer forgets everything it
has stored for the current label and starts again from scratch.

4.2.3 Size of label

The “S” line additionally defines the use of different label sensor types (here the see-through detection by a
prefixed parameter “l1”, the lower case letter l followed by the number 1). This additional information must be
separated with a semicolon from the following parameters describing the dimensions. The other values are
separated from each other by a comma.� If decimal numbers are to be used, a dot must always be used as
decimal separator, even if the printer is set to Germany, for example.

There are a total of four options for recognizing the beginning of the label. “l0” selects the reflex light barrier from
below, “l1” selects the transmitted light barrier, “l2” selects the reflex light barrier from above (if available), and “e”
does not detect the gap, but uses only the length specification (continuousmaterial).

The remaining parameters are as already mentioned:
S start detection;shift right, shift down, height, height + gap, width

Exercise 4.3 Set a print area within the label � S. 139

Sometimes it is necessary to print on labels that are already printed and sometimes additionally coated.
A mostly rectangular area is let out in order to print data into it during production with the label printer.
The figure 4.2 shows such a case. What is the page definition in JScript code for this label?

4 The typical structure of a label 27

4.2.4 Speed and heat

Speed and heat are set with the “H” command. The speed is replaced by the value from the JScript command,
but the value for the heat is added to the default value in the printer. Maximum up to the limits -20 and +20.
Examine the following line

H 150, 2

it sets the speed to 150 mm/s. However, the heat is only set to +2 if the default value in the printer is 0. If 2 is also
set in the printer, the total heat value is 4.

Print speed and heat must be adjusted for the respective label material. To protect the print head, it is recom-
mended to select the lowest possible heat.

The quality of the printout depends strongly on the correct combination of label and ribbon. �If foil (ribbon)
and label don’t fit together, a print result should not be squeezed out of the printer by excessive heat, it
would drastically reduce the lifetime of the print head. Overheated printheads are not covered under
warranty!

The print speed mainly influences the print quality (precisely print image). The lower the speed, the cleaner the
print. If the application allows slow printing (there is enough time), you should use this and not set the printing
speed too high.

Too little heat will cause the print to fade, while too much heat will cause the print to smear and increase wear
on the print head.

Exercise 4.4 A perfect print result

Type the list 4.2 (or just click on the download symbol), adjust the page dimensions to your label size and
save the label as “Minimal.lbl”. Now insert the following before the last line (“A 1”):

6 T 10, 10, 0, 5, 8;Quality is no accident

Change the heat values to -10, -5, 0, 5 and 10 respectively and print one copy. The effect of the temperature
setting should be clearly visible.

Exercise 4.5 Fast or pretty?

From the previous example, select the best setting for the heat and now select the speeds 50 mm/s,
100 mm/s, 150 mm/s and 200 mm/s respectively. Can you see a difference in print quality?

28 4 The typical structure of a label

4.2.5 Using options

With the command “O” you can activate one or more options. The most frequently used option is probably “R”,
which outputs the label rotated by 180° (R = rotated). Other useful options are “S” for single buffer operation or
“T” for tear-off mode. “U” can be used to prevent pause reprinting so that no label can be printed twice with the
printer’s repeat key (Unique).

See the programming guide for details on the options. There you will find a complete list and more detailed
explanations of all options.

If several options are desired, they are separated by a comma.

O R, T

In this case, the label would be output rotated by 180° in tear-off mode. This combination is common in tear-off
mode, since the label is not upside down when the operator removes it.

Exercise 4.6 Headstand of the labels � S. 140

Take the JScript file from the previous two exercises and select the optimum temperature and speed for a
clean print image and protection of the print head. An optimal value can also be between the previously
required steps, but you can only enter integers for the heat and preset values for the speed (use the
selection in the printer menu as a guide). Now omit the line with the content “O R”. What is noticeable
when printing?

4.3 Static objects

In the following, the visible elements of a label layout will be described with their most important parame-
ters. This enumeration is far from being complete, but is not intended to replace the programming instruc-
tions.

4.3.1 Texts

Texts are integrated into a label by the command “T”. Following are the parameters:

1. X-position (from left edge to right).
2. Y-position (from top edge to bottom).
3. Rotation angle (integer counterclockwise).
4. Font number (e.g. 3 = Swiss 721, 5 = Swiss 721 bold, 596 = Monotype 821).
5. Font size, as distance between p-line and k-line (length d in figure 4.3).
6. Options, separated by commas (s = oblique, i = italic, n = inverse, b = bold, qn=compressed8).
7. The actual content separated by semicolon.

4 The typical structure of a label 29

Figure 4.3: Font lines9 and scheme of a print type. The dimension d corresponds to the font height specified in the fifth parameter of the
T command and is also called cone height.

�For texts, the position always refers to thebaseline of the font. All other objects (e.g. barcodes or graphics)
are described in position by their upper left corner.

You can see in the listing 4.3 that both the specification pt12 and the specification 4.5 were used for the font size.
The linemm turns 4.5 into a font size of 4.5mm. Placing pt in front of a font size specification allows JScript to pro-
cess this size in “DTP point”, a unit of measurement often used in typesetting. For example, common text editors
use the unit point for entering font sizes. See Wikipedia for further explanations.

For decimal fractions, always use the period as a separator between the integer part and the decimal part (US
notation).

�Thecomma isused inJScriptonlyasaseparator forparametersandmustnotbeused fornumbers!

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, -2
5 T 45, 25, 45, 3, pt12;Wind
6 T 45, 25, 315, 3, pt12;mühlen
7 T 45, 25, 225, 3, pt12;mahlen
8 T 45, 25, 135, 3, pt12;Mehl
9 T 44, 42, 90, 3, 4.5, b;für

10 T 48, 42, 90, 3, 4.5, b;Brote
11 A 1

Listing 4.3: Example for angle specifications and font styles

8For compression, an integer from 10 to 1000 must be used for the n. Text that is not compressed has the option “q100”. If the text is to
be compressed to 80 %, you must use “q80” as an option.

9By Brian Ammon, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2349540

m m
J
S l1; 0, 0, 68, 71, 100
H 150, -2
T 45, 25, 45, 3, pt12;Wind
T 45, 25, 315, 3, pt12;mühlen
T 45, 25, 225, 3, pt12;mahlen
T 45, 25, 135, 3, pt12;Mehl
T 44, 42, 90, 3, 4.5, b;für
T 48, 42, 90, 3, 4.5, b;Brote
A 1

https://en.wikipedia.org/wiki/Typographic_unit
https://commons.wikimedia.org/w/index.php?curid=2349540

30 4 The typical structure of a label

Figure 4.4: Result from listing 4.3

Exercise 4.7 Pretty weird � S. 140

Design and print a label on which your name is printed across from the bottom left to the top right, large
enough to fill the label to the maximum. Use font no. 3 with the font option “inverse”. Remember that
angle specifications are only allowed as whole numbers.

4.3.2 Using your own fonts

In addition to the fonts supplied, it is also possible to use your own fonts. For this purpose, these fonts must be
of the type TrueType.

Load the font to the printer in the subdirectory fonts before you use the font in a label. The printer will
look for the font in the default memory. If the default memory is set to USB, a font stored in IFFS10 is not

10IFFS is the name of the printer’s internal non-volatile memory (Internal Flash File System). This is case-sensitive and file names longer
than 8 characters can be used.

4 The typical structure of a label 31

found.

To use a TrueType font we first have to load the font into RAM (volatile memory) and assign a font number. This
is done with the “M l” and the “F” command.

In listing 4.4 the free fonts Linux Libertine11 and Linux Biolinum are used and first loaded into RAM (lines 4 to 10).
Then, in line 18, number 11 is assigned to the font family Linux Libertine so that these fonts can be used from line
22 on.

When loading the TrueType files, “M l fnt” is followed by the name of the file without file extension, separated by
a semicolon. When assigning fonts, after the “F” command use the font number and, separated by a semicolon,
the name of the font family. If you do not know the names of the font families, you can also assign the file name
of the normal font to the font number. So the two lines 18 and 19 could also be

18 F 11;LinLibertine_Rah
19 F 13;LinBiolinum_Rah

The special function [J:r45] aligns the text right-aligned on an imaginary length of 45 mm. With [J:c100] the
heading is centered on the label.

It is interesting that we loaded six font styles into memory (lines 4 to 10), but only assigned two font numbers.
Nevertheless, we can still use all six fonts. The cab printers search for a bold or italic font that belongs to the
same font family with the options b and i. Just assign a font number to the default (Regular) and use the options
for bold or italics.

Figure 4.5: Using TrueType fonts in listing 4.4

Notice that all fonts have the same font size of 5 mm? However, some fonts appear to be of different height and
strength. The auxiliary lines in the example have a distance of 5 mm to each other. You can immediately see
that the font size does not correspond to the visible height, because the p-line is not visible due to the missing
descenders (for an explanation see figure 4.3).

Onemore hint. Some TrueType fonts are of enormous size and usually occupy unnecessarily muchmemory. The
font Arial UNICODE MS, for example, has the special characters for many languages of the world on board, but

11You can download both fonts here: https://sourceforge.net/projects/linuxlibertine/

https://sourceforge.net/projects/linuxlibertine/

32 4 The typical structure of a label

these are usually not used in the actual label. It is better to use a font that is reduced to the specific application
in order to save memory and reduce the preparation time in the printer.

Exercise 4.8 Handwritten name badges � S. 141

You have 30 mm high and 100 mmwide labels on which the name of participants of an event should be
printed. To make the name badges look casually friendly, a beautiful handwriting should be used, which
the printer does not have yet. Download Kimberly Geswein’s “Indie Flower” font and transfer it to your
printer.
https://fonts.google.com/specimen/Indie+Flower
Design a label with the name of a participant and his organization. For an example, see Figure 4.7.

https://fonts.google.com/specimen/Indie+Flower

4 The typical structure of a label 33

1 ; set measurement to Millimeter
2 m m
3

4 ; load fonts (using filenames)
5 M l fnt;LinLibertine_Rah
6 M l fnt;LinLibertine_RBah
7 M l fnt;LinLibertine_RIah
8 M l fnt;LinBiolinum_Rah
9 M l fnt;LinBiolinum_RBah

10 M l fnt;LinBiolinum_RIah
11

12 ; job start, label size, speed and heat
13 J
14 S l1; 0, 0, 68, 71, 100
15 H 150, -2
16

17 ; assign font number (using the font family name)
18 F 11;Linux Libertine
19 F 13;Linux Biolinum
20

21 ; insert font examples
22 T 0, 15, 0, 11, 5;Libertine Regular[J:r45]
23 T 0, 30, 0, 11, 5, b;Libertine Bold[J:r45]
24 T 0, 45, 0, 11, 5, i;Libertine Italic[J:r45]
25 T 0, 60, 0, 11, 5, s;Libertine Slanted[J:r45]
26

27 T 55, 15, 0, 13, 5;Biolinum Regular
28 T 55, 30, 0, 13, 5, b;Biolinum Bold
29 T 55, 45, 0, 13, 5, i;Biolinum Italic
30 T 55, 60, 0, 13, 5, s;Biolinum Slanted
31

32 ; draw guide lines
33 G 0, 10, 0;L: 100, 0.05
34 G 0, 15, 0;L: 100, 0.05
35 G 0, 25, 0;L: 100, 0.05
36 G 0, 30, 0;L: 100, 0.05
37 G 0, 40, 0;L: 100, 0.05
38 G 0, 45, 0;L: 100, 0.05
39 G 0, 55, 0;L: 100, 0.05
40 G 0, 60, 0;L: 100, 0.05
41

42 ; headline
43 T 0, 5, 0, 3, 5, u;Linux Libertine und Linux Biolinum Schriften[J:c100]
44

45 ; don't print, just create an internal preview bitmap
46 A [PREVIEW]

Listing 4.4: Using some custom fonts

				 set measurement to Millimeter

		m m

		

				 load fonts (using filenames)

		M l fnt		LinLibertine_Rah

		M l fnt		LinLibertine_RBah

		M l fnt		LinLibertine_RIah

		M l fnt		LinBiolinum_Rah

		M l fnt		LinBiolinum_RBah

		M l fnt		LinBiolinum_RIah

		

				 job start, label size, speed and heat

		J

		S l1		 0, 0, 68, 71, 100

		H 150, -2

		

				 assign font number (using the font family name)

		F 11		Linux Libertine

		F 13		Linux Biolinum

		

				 insert font examples

		T 0, 15, 0, 11, 5		Libertine Regular[J:r45]

		T 0, 30, 0, 11, 5, b		Libertine Bold[J:r45]

		T 0, 45, 0, 11, 5, i		Libertine Italic[J:r45]

		T 0, 60, 0, 11, 5, s		Libertine Slanted[J:r45]

		

		T 55, 15, 0, 13, 5		Biolinum Regular

		T 55, 30, 0, 13, 5, b		Biolinum Bold

		T 55, 45, 0, 13, 5, i		Biolinum Italic

		T 55, 60, 0, 13, 5, s		Biolinum Slanted

		

				 draw guide lines

		G 0, 10, 0		L: 100, 0.05

		G 0, 15, 0		L: 100, 0.05

		G 0, 25, 0		L: 100, 0.05

		G 0, 30, 0		L: 100, 0.05

		G 0, 40, 0		L: 100, 0.05

		G 0, 45, 0		L: 100, 0.05

		G 0, 55, 0		L: 100, 0.05

		G 0, 60, 0		L: 100, 0.05

		

				 headline

		T 0, 5, 0, 3, 5, u		Linux Libertine und Linux Biolinum Schriften[J:c100]

		

				 don't print, just create an internal preview bitmap

		A [PREVIEW]

34 4 The typical structure of a label

Figure 4.6: In cabLabel S3 a height of 5.0 mmwas chosen for the font. This specification is later sent to the printer in JScript code. The
cap height is only 3.91 mm and the descender is 1.09 mm. cabLabel S3 Pro shows you these values in a help bubble when
you move the mouse pointer over the gray text below the values.

Figure 4.7: A handwriting gives an empathic impression on a name badge. A free font from the designer Kimberly Geswein was used
here.

4 The typical structure of a label 35

4.3.3 Textboxes

Text boxes are frameless rectangles that are filled with text, available since firmware 5.37 for all printers using an
X4 mainboard. They are defined with theW command to specify their width and height, and the reference point
for placement on the label is the upper left corner. Unlike a simple text element, the text in a text box is wrapped
in multiple lines. Thus, the text always remains within the box. HTML markup can be used for further styling.
Because this all sounds quite complicated here is an example (listing 4.5).

1 m m
2 J
3 S l1;0,0,68,71,100
4 T 10,10,0,3,3,s,n;HTML formatted text box
5 W:Textbox;10,10,0,80,48,3,3;<HTML>
6 <h1>New Textbox made by SQUIX</h1>
7 A SQUIX is able to render formatted text boxes since firmware 5.37, but an A<sup>+</sup…

> printer is not.
8 <hr>
9 <p align=justify>The text box is 80 mm wide and 48 mm high. What is interesting here is…

the reference point. Unlike normal text elements, it is not the baseline of the …

text, but the upper left corner of the box.</p>
10 Text can also be rendered bold, <i>italic</i>, ^{high}, _{low}, …

<u>underlined</u>, <s>strikethrough</s> or <big>larger</big>. A <i>combination</i…
> is also possible.

11 </HTML>
12 G 10,10,0;R:80,48,0.25
13 A 1

Listing 4.5: Think of a text box as a blank page in a web browser that the printer fills to fit within its dimensions.

Figure 4.8: The listing 4.5 leads to this result. As can be clearly seen, the line break is not taken over, but must be specified by an HTML
command like
 or <p>. . . </p>.

The most important tags available in the W command, as the (usually enclosing) HTML language elements are
also called, are shown in the table 4.1.

m m
J
S l1;0,0,68,71,100
T 10,10,0,3,3,s,n;HTML formatted text box
W:Textbox;10,10,0,80,48,3,3;<HTML>
<h1>New Textbox made by SQUIX</h1>
A SQUIX is able to render formatted text boxes since firmware 5.37, but an A⁺ printer is not.
<hr>
<p align=justify>The text box is 80 mm wide and 48 mm high. What is interesting here is the reference point. Unlike normal text elements, it is not the baseline of the text, but the upper left corner of the box.</p>
Text can also be rendered bold, <i>italic</i>, ^{high}, _{low}, <u>underlined</u>, <s>strikethrough</s> or <big>larger</big>. A <i>combination</i> is also possible.
</HTML>
G 10,10,0;R:80,48,0.25
A 1

36 4 The typical structure of a label

Table 4.1: Format text boxes using theW command

Tag Result

... bold text
<i>...</i> italic text (italic)
<u>...</u> underlined text
<s>...</s> striked out text
^{...} superscript text
_{...} subscript text
<big>...</big> enlarged text
<!-- ... --> comments (will not be printed)

 newline
<p>...</p> paragraph
<p align=left>...</p> left aligned paragraph (identical to <p>)
<p align=right>...</p> right aligned paragraph
<p align=center>...</p> centered paragraph
<p align=justify>...</p> full justified paragraph
<h1>...</h1> heading of 1st order
<h2>...</h2> heading of 2nd order
<h3>...</h3> heading of 3rd order
<h4>...</h4> heading of 4th order
<h5>...</h5> heading of 5th order
<hr> draws a horizontal rule

To make the JScript code more readable there is an exception for the W command. The JScript interpreter does
not recognize an end of line between the tags <HTML> and </HTML>. Thus, longer content in the W command
can be written across multiple lines if you frame it appropriately in a <HTML> tag pair. In the listing 4.5 this can
be seen (lines 5 to 19).

Please note that a textbox is always drawn without a border. In the example (listing 4.5), the frame is drawn
separately by line 20 to show the positioning. A single text element is inserted in line 4. It is rendered with the
additional parameters s and n to slant and invert the text. You can see in the figure 4.8 that the text sits exactly on
the top edge of the text box. With the T command, the 10,10,0,. . . refers to the baseline of the text. With a
rotation of 0°, the text is set at the coordinate (10/10) on the baseline.

Inside the text box, which also has its anchor point at the coordinate (10/10) and a rotation of 0°, the text is placed
in such a way that a minimum distance to the edge remains. By the way, the distance to the left and to the top is
the same here. However, since the text used in the example does not reach completely to the k-line (see also
Figure 4.3), the distance to the top appears larger.

It is not possible in theW command to set the baseline of the first letter as an anchor point. If you want to align
text horizontally, you should not mix the T andW commands if possible.

4.3.4 Hyphenation in Text Boxes

A text box distributes the text without any knowledge of the language used. Thus, the printer cannot hyphen-
ate, but only breaks the text where there are spaces. However, there is a special character in the Unicode
character set which is not printed. It carries an information that the text can be hyphenated at exactly this
position.

4 The typical structure of a label 37

The cab printers use this special character in the W command to insert hyphenation. The special character is
the Unicode character No. 173. Four ways allow its use in the W command. You can use the Unicode special
command [U:173], its hexadecimal notation [U:$AD] or the two other abbreviations, based on HTML,
­ and ­.

1 J
2 S 0,0,68,71,100
3 H 100,0
4 W 10,65,90,60,5,3,2.3;Neil and Buzz left a flag at the moon in 1969 landing at
5 W 15,10,0,15,40,3,4;Mare Tran­quil­li[U:173]ta[U:$AD]tis
6 A 1

Listing 4.6: There are several ways to indicate where hyphenation may occur. All of them represent the Unicode character “SOFT
HYPHEN”.

Figure 4.9: Listing 4.6 shows multiple ways to indicate a position for hyphenation.

4.3.5 Barcodes

Barcodes offer a wide range of possible parameters. The topic alone is so complex that more than 100 pages of
the programming manual deal with barcodes.

Basically, JScript has the B command to create a barcode. It has the parameters:

1. X-position (from left edge to right).
2. Y-position (from top edge to bottom).
3. Rotation angle (only multiples of 90° allowed).
4. The type of barcode, e.g. Code128, EAN-13, Datamatrix or QR Code.
5. Options directly appended to the type with the plus sign (without comma in between).
6. The size whose parameters depend on the type.
7. After a semicolon the content of the barcode.

It is strongly recommended to use the programming guide to read all parameters for the respective barcode
type. We will only look at a Datamatrix, a QR Code and a Code128 here to show the creation of three common
barcodes as an example.

J
S 0,0,68,71,100
H 100,0
W 10,65,90,60,5,3,2.3;Neil and Buzz left a flag at the moon in 1969 landing at
W 15,10,0,15,40,3,4;Mare Tran­quil­li[U:173]ta[U:$AD]tis
A 1

38 4 The typical structure of a label

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 1
5 B 10, 10, 0, DATAMATRIX+COLS18+ROWS18, 1;Hallo Welt!
6 B 10, 48, 0, CODE128, 8, 0.15;grosse Buchstaben - grosse Wirkung
7 B 10, 58, 0, code128, 8, 0.15;kleine Buchstaben - keine Wirkung
8 B 50, 5, 0, QRCode, 0.75;https://www.cab.de/de/kennzeichnung/etikettendrucker/squix
9 A 1

Listing 4.7: Examples of some barcodes

Figure 4.10: Label with several barcodes (created with listing 4.7)

Let’s look at the example in listing 4.7. The first barcode creates a data matrix with a fixed 18x18 matrix. The
following two lines each generate a Code128, but with the difference that capitalized type specifications
generate a plain text line in addition to the barcode (only for 1-D codes). The last line with a B command
generates a QR Code. As with the Datamatrix, upper/lower case is not relevant here because the printer does not
generate a text line for 2-D codes.

For Datamatrix and QR Code, the size specification is the module size, i.e., the edge length of the smallest square
(called module) that makes up the codes.

For Code128, two size specifications are required. The first defines the height (in the example 8 mm), the second
specification is the width of the smallest bar (here 0.15 mm).

If a code is specified in capital letters, i.e. with a plain text line, the font below the barcode is calculated with
the specified height. AlthoughbothCode128 commands require a height of 8mm, the height of the bars in the bar-
codegenerated in line6 is therefore lower than in thebarcode from line7 (from listing4.7).

� Modulewidth and linewidth are related to the resolution of the print bar, becausewith a thermal transfer
printer no dots can be heated proportionally (there are no half dots).

The printer automatically determines the number of heating points that comes closest to the specified value. If
the same label is printed on a 203 dpi and a 300 dpi printer, the widths of the barcodes and the sizes of the 2-D
codes may differ. The smaller the barcode, the more clearly the effect is visible.

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 1
B 10, 10, 0, DATAMATRIX+COLS18+ROWS18, 1;Hallo Welt!
B 10, 48, 0, CODE128, 8, 0.15;grosse Buchstaben - grosse Wirkung
B 10, 58, 0, code128, 8, 0.15;kleine Buchstaben - keine Wirkung
B 50, 5, 0, QRCode, 0.75;https://www.cab.de/de/kennzeichnung/etikettendrucker/squix
A 1

4 The typical structure of a label 39

Exercise 4.9 Creating a WLAN access QR Code

Create a label where a QR code allows automated access to a (fictitious) WLAN. You are welcome to use
the label for your own guest network. The important thing is that you create the content of a QR Code
according to fixed specifications. These specifications for providing access information to a WLAN are
described in this section of the scanner programming library wiki “zxing”:

https://github.com/zxing/zxing/wiki/Barcode-Contents#
wi-fi-network-config-android-ios-11

Below is a small example as a suggestion:

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 0
5 O R
6 T 10, 15, 0, 3, 5;Scan Code to enter the WiFi network!
7 B 30, 20, 0, qr-code, 1;WIFI:T:WPA;S:HoneyPotter;P:123456;;
8 A 1

Listing 4.8: QR codes allow automated access to WLAN networks. By the way, a cab printer also shows you such a QR
code on the printer display when you set up a hotspot. You don’t have to type SSID and password laboriously.

Try it out for your own WLAN network. If you do not have one at hand, your printer can provide you a
WLAN hotspot. Can you connect your smartphone automatically, just by using the camera appa?
aOn iPhones Apple has built this feature into the camera app. If you are using an Android smartphone this will not work on all

models. However, you can download several barcode scanner apps from the Google App Store that offer this feature.

4.3.6 Images

For the images to be integrated into a label, the limitations of thermal transfer printing technology apply.
Individual dots are calculated, which are either printed or not printed (black and white), there are no fractions of
dots (no gray representation).

Once this is accepted, it becomes clear that color or grayscale image formats such as JPEG are not particularly
suitable for printing as an image on a label. Better suited are black and white formats such as those that can
be stored as PNG (Portable Network Graphics). The integration is done with the I command (capital letter I like
Image).

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0
O R
T 10, 15, 0, 3, 5;Scan Code to enter the WiFi network!
B 30, 20, 0, qr-code, 1;WIFI:T:WPA;S:HoneyPotter;P:123456;;
A 1

https://github.com/zxing/zxing/wiki/Barcode-Contents#wi-fi-network-config-android-ios-11
https://github.com/zxing/zxing/wiki/Barcode-Contents#wi-fi-network-config-android-ios-11
https://en.wikipedia.org/wiki/Portable_Network_Graphics

40 4 The typical structure of a label

Figure 4.11: Drawing of a woman folding a napkin (line 5 from listing 4.9)

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 0
5 I 25, 5, 0, 1, 1,a;Mechthild
6 A 1

Listing 4.9: Positioning of an image

In listing 4.9 the two magnification factors and the parameter a are used to use the autoload function. The
parameters of Imean (line no. 5):

1. X-position (from left edge to right).
2. Y-position (from top edge to bottom).
3. Rotation angle (only multiples of 90° allowed).
4. Magnification factor in X dimension (integer from 1 to 10).
5. Magnification factor in Y dimension (integer from 1 to 10).
6. Option a to load the file automatically.
7. The file name separated by a semicolon (with or without file extension)

The image must be located in the subdirectory images. If no matching image is found, the output is omitted
without an error message. The file extension is added by the printer itself if it is not specified. Allowed are the
extensions ASC, BMP, GIF, IMG,MAC, PCX, PNG and TIF.

� Images are always distributed 1:1 to the points on the print bar (integer magnifications of up to 10x
are possible). Therefore images are always printed in different sizes on printers with different resolu-
tions!

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0
I 25, 5, 0, 1, 1,a;Mechthild
A 1

4 The typical structure of a label 41

Exercise 4.10 Sticker with logo and QR code for mailings

Create a label as a return address label for mailings. In doing so, include a logo of your company. Save
the logo in a suitable format in the subdirectory “images” and design your shipping label according to
your own ideas.

In addition to a graphic, you can also integrate a QR code that contains the address of your website as
content (e.g. “https://www.cab.de”). If you would like to view a sample code for orientation, Figure 4.17
on page 49 shows you how to integrate a logo and a QR code into a product sticker. The source code for
Figure 4.17 can be found in the listing 4.12 on page 45. Of interest are lines 8 and 21.

4.3.7 Images as embedded ASCII data

If you want to include the image data in the print job, JScript offers the format ASC. This is a special format for
black and white graphics, which only works with the ASCII characters 0-9 and A-F.

You can read the exact structure of the format in the programming guide, but it is recommended to use cabLabel
S3 for the calculation. In cabLabel’s printer configuration, set the image output to IMG ASCII and write the print
data to a file (button “Memory card” in the ribbonmenu). The figure 4.12 shows the setting in cabLabel S3. In
listing 4.10 you see a sample code and its output in figure 4.13.

After the image is transferred to the printer’s RAM using the autoload option, the image is placed in the printer
as if the image file were in fixed memory (e.g. on a USB stick). However, this is only possible until the printer is
switched off or all image data is removed from RAM using e IMG;*.

https://www.cab.de/programmierung
https://www.cab.de/cablabel
https://www.cab.de/cablabel

42 4 The typical structure of a label

Figure 4.12: The image format IMG ASCII means that the generated JScript file can be edited in ASCII editors.

Figure 4.13: A graphic with enlargement (line 24 in listing 4.10)

4 The typical structure of a label 43

1 ; erase all images from RAM
2 e IMG;*
3 ; get Victory.ASC into RAM
4 d ASC;Victory
5 003100490180017005800201F8058002010C058007018C000C00000080070304001F000000800701
6 8600230000008007010600630000008007018300630000008007018300430000008007018300C300
7 00000180068100C3000000018006C181830000000180064181830000000180066081020000000000
8 FF0201800660C30600000001800630C2060000000000FF0201800630C60C00000001800610C40C00
9 0000018006184C08000000018006186C18000000018006186C100000000180060838100000000180

10 061838300000000180060C0030000000800701CF8020000000800703EDFC30000000800706380620
11 0000008007061C03300000008007061E03A00000008007061F00F00000008007360F80E000000080
12 073E0DF0700000008007630670600000008007630610300000008007618210300000008007610310
13 30000000800731831030000000800730C11818000000800730E11018000000800730630018000000
14 8007387E001800000080073C4C001000000080073FC0003000000080073380003000000080072000
15 00600000008007300000600000000000FF028007100000C000000080071800018000000080030C00
16 0104800306000304800303000204800301800204800303000204800301800204800301C006048003
17 01FFFE040180020FC0040000FF0D07
18

19 m m
20 J
21 S l1; 0, 0, 68, 71, 100
22 H 150, 0
23 ; place the image with autoload and 7x6 magnification
24 I 75, 10, 0, 7, 6,a;Victory
25 A 1

Listing 4.10:Modified JScript output of cabLabel S3

4.3.8 Graphical elements (circles, lines and rectangles)

They consist of one line starting with G and follow as parameter:

1. X-position (from left edge to right).
2. Y-position (from top edge to bottom).
3. Rotation angle (integer).
4. A letter separated by a semicolon for the element type (C = circle, L = line, R = rectangle),

followed by a colon and further parameters depending on the selected type.

With the circle are the parameters:

5. Radius in the direction of the rotation angle.
6. Radius perpendicular to the angle of rotation.
7. Line width (starting from the radius inwards).12
8. If required, further options as special function (fill, shade or outline)

The parameters of a line are:

5. Length.
6. Width.
7. Shape of the beginning of the line (a = arrowhead, r = rounded, s = rectangular).
8. Shape of the line end (as at the beginning).

And follow with a rectangle:

12For a filled point with the center point (X |Y) and the radius r you can use the command “G X,Y,0;C:r,r,r.”

; erase all images from RAM
e IMG;*
; get Victory.ASC into RAM
d ASC;Victory
003100490180017005800201F8058002010C058007018C000C00000080070304001F000000800701
8600230000008007010600630000008007018300630000008007018300430000008007018300C300
00000180068100C3000000018006C181830000000180064181830000000180066081020000000000
FF0201800660C30600000001800630C2060000000000FF0201800630C60C00000001800610C40C00
0000018006184C08000000018006186C18000000018006186C100000000180060838100000000180
061838300000000180060C0030000000800701CF8020000000800703EDFC30000000800706380620
0000008007061C03300000008007061E03A00000008007061F00F00000008007360F80E000000080
073E0DF0700000008007630670600000008007630610300000008007618210300000008007610310
30000000800731831030000000800730C11818000000800730E11018000000800730630018000000
8007387E001800000080073C4C001000000080073FC0003000000080073380003000000080072000
00600000008007300000600000000000FF028007100000C000000080071800018000000080030C00
0104800306000304800303000204800301800204800303000204800301800204800301C006048003
01FFFE040180020FC0040000FF0D07

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
; place the image with autoload and 7x6 magnification
I 75, 10, 0, 7, 6,a;Victory
A 1

44 4 The typical structure of a label

Figure 4.14: Face built from graphic elements (listing 4.11)

5. Width (edge length in rotation angle direction).
6. Height (edge length in clockwise direction perpendicular to the rotation angle).
7. Thickness of the horizontal lines.
8. Thickness of the vertical lines.
9. If required, further options as special function (fill, shade or outline)

The options fill, shade and outline are inserted as special functions (without a comma to separate them). The
function name is F, S or O. In listing 4.11 a shading has been used (drawing the cap in line 5). The exact structure
is explained in detail in the programming guide.

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 2
5 G 45, 10, 340;C: 40, 10, 44[S:100,50,80]
6 G 40, 35, 0;C: 30, 30, 2
7 G 40, 35, 0;C: 10, 10, 1
8 G 60, 35, 0;C: 10, 10, 1
9 G 40, 40, 0;C: 4, 4, 4

10 G 60, 40, 0;C: 4, 4, 4
11 G 38, 52, 350;L: 15, 3, r, r
12 A 1

Listing 4.11: Graphic elements form a face

Exercise 4.11 The house of Santa Claus � S. 141

Do you remember the drawing exercise “The House of Santa Claus” from Kindergarten days? Create a
label in which you draw Santa’s house using the “G” commands in JScript.
The original St. Nicholas Child’s play draws eight lines without stopping. Can you draw the house with
less than 8 “G” commands?

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 2
G 45, 10, 340;C: 40, 10, 44[S:100,50,80]
G 40, 35, 0;C: 30, 30, 2
G 40, 35, 0;C: 10, 10, 1
G 60, 35, 0;C: 10, 10, 1
G 40, 40, 0;C: 4, 4, 4
G 60, 40, 0;C: 4, 4, 4
G 38, 52, 350;L: 15, 3, r, r
A 1

https://www.cab.de/programmierung

4 The typical structure of a label 45

4.4 Design the label dynamically

Up to now we have only built a label statically. In other words, we wrote the elements (text, barcodes, etc.) with
fixed content into a label as a JScript file.

We will now look at an alternative approach, the separation of content and layout. To do this, we first create a
layout whose content corresponds to what will later be printed. But the content is only a placeholder and will be
replaced by the actual content before printing.

4.4.1 Referencing content

In order for a content to be dynamically changed (replaced), we need a reference to the content so that the
printer knows later where to make a content change.

To include such a reference, a field name, which must start with a letter and may consist of letters and numbers,
separated by a colon and a semicolon, is placed after the JScript command. Sounds complicated, looks like this
(lines 18 to 21 in listing 4.12)

1 ; usual header
2 m m
3 J
4 S l1;0, 0, 68, 70, 100
5 H 150, 0
6

7 ; static elements
8 I 72, 2, 0, 1, 1,a;cab-logo
9 T 4, 52, 0, 3, 3;Part number:

10 T 4, 30, 0, 3, 3;Product name:
11 T 4, 41, 0, 3, 3;Resolution:
12 T 4, 9, 0, 5, 5.4;cab Produkttechnik
13 T 4, 12.5, 0, 3, 2.5;Wilhelm-Schickard-Str. 14
14 T 4, 15, 0, 3, 2.5;76131 Karlsruhe
15 G 0, 18, 0;L: 100, 0.2, s, s
16

17 ; dynamic elements including their field names
18 T:PARTNO; 35, 52, 0, 3, 4;5954501
19 T:PROD; 35, 30, 0, 5, 8, b;A4+
20 T:RESOL; 35, 41, 0, 3, 4;300 dpi
21 B:SERNR; 74, 42, 0, qrcode+ELL+MODEL1, 0.92;0000000000001
22

23 ; no printout, just generate a preview bitmap
24 A [PREVIEW]

Listing 4.12: Example of a layout template. Variable elements can be referenced by field names (lines 18 to 21).

The example names four elements with the field names PARTNO, PROD, RESOL and SERNR. The first three are text
elements, the last one is a QR code.

The last line with the content is important:
A [PREVIEW]

; usual header
m m
J
S l1;0, 0, 68, 70, 100
H 150, 0

; static elements
I 72, 2, 0, 1, 1,a;cab-logo
T 4, 52, 0, 3, 3;Part number:
T 4, 30, 0, 3, 3;Product name:
T 4, 41, 0, 3, 3;Resolution:
T 4, 9, 0, 5, 5.4;cab Produkttechnik
T 4, 12.5, 0, 3, 2.5;Wilhelm-Schickard-Str. 14
T 4, 15, 0, 3, 2.5;76131 Karlsruhe
G 0, 18, 0;L: 100, 0.2, s, s

; dynamic elements including their field names
T:PARTNO; 35, 52, 0, 3, 4;5954501
T:PROD; 35, 30, 0, 5, 8, b;A4+
T:RESOL; 35, 41, 0, 3, 4;300 dpi
B:SERNR; 74, 42, 0, qrcode+ELL+MODEL1, 0.92;0000000000001

; no printout, just generate a preview bitmap
A [PREVIEW]

46 4 The typical structure of a label

Figure 4.15: A text field was created in cabLabel S3. It is first called “Text20”. You can change the field name on the General tab (this is
where “SERNO” is set). If you want to reuse content as described in section 4.4.2, use the Data Source tab in cabLabel S3 to
create the link.

This does not trigger printing, but creates an internal bitmap. This can be viewed in the browser at the following
address:

https://192.168.10.1/cgi-bin/bitmap

Where 192.168.10.1 is the IP address of the printer (here you must enter the address of your printer). If the
connection to the printer is set to unencrypted (you can specify this in the printer settings), you must use
http instead of https. Since the SQUIX an encrypted connection is possible, the A+ and Hermes+ printers com-
municate only unencrypted, and they are not capable of preview graphics using the A [PREVIEW] com-
mand.

Note: Technically correct, this type of “field name” is called an identifier. In colloquial language it is often also re-
ferred to as a variable. However, variables or data fields usually have a data type. JScript does not know any data
types, the field names serve only as reference (pointer) to the content of a line. Strictly speaking, the content is al-
waysacharacter string,which theJScript interpreter converts intoanumber if required.

4.4.2 Reusing content

Assigning a field name alone does not bring progress. However, the names offer two main possibilities for
dynamic design. On the one hand, the contents can be changed later, on the other hand, a content can be used
several times in a label.

For multiple use, we simply use the field name like a special function and write the field name in square brackets.
Thismakes it possible, for example, to add a self-selected font and size to a barcode, as the example in listing 4.13
illustrates.

https://192.168.10.1/cgi-bin/bitmap
https://en.wikipedia.org/wiki/Identifier_(computer_languages)

4 The typical structure of a label 47

Figure 4.16: The upper barcode has a plain text line generated by the printer, the lower barcode has its own formatting. The field
name SELFMADE ensures that the correct content is always printed under the barcode if you change it later with only one
R command. (Created by listing 4.13.)

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5 O R
6 ; if the barcodetyp is written in capital letters, the printer will add a plain text
7 B 10, 10, 0, CODE128, 18, 0.2;Der Drucker bestimmt die Schriftart
8 ; no capital letters - no additional plain text unterneath
9 B:SELFMADE; 10, 30, 0, code128, 18, 0.2;Wir entscheiden lieber selbst

10 ; a selfmade plain text allows custom font and format
11 T 12, 52, 0, 3, 4, b, s;[SELFMADE]
12 A 1

Listing 4.13:Multiple use of a content by reference to the field name

In line 7 a Code128 is printed, which the printer adds a plain text line. But this makes the code smaller in height
and we have no influence on the font size or the font style. Line 9 therefore prints a Code128 without a plain text
line, but gives the code a field name “SELFMADE”. This is used in the following text line to insert the contents
of the barcode and thus to reuse the text “Wir entscheiden lieber selbst”. The big advantage of this procedure
is that both the barcode and the corresponding plain text line can later be assigned new content with a single
command (see section 4.4.4).

4.4.3 Calling templates from storage

After we are satisfiedwith the label layout, we upload the layout template to the subdirectory labels on the printer
(e.g. via FTPupload). Todo this, youcanspecify the followingaddress in theWindows filebrowser:

ftp://ftpcard:card@192.168.10.1/

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
O R
; if the barcodetyp is written in capital letters, the printer will add a plain text
B 10, 10, 0, CODE128, 18, 0.2;Der Drucker bestimmt die Schriftart
; no capital letters - no additional plain text unterneath
B:SELFMADE; 10, 30, 0, code128, 18, 0.2;Wir entscheiden lieber selbst
; a selfmade plain text allows custom font and format
T 12, 52, 0, 3, 4, b, s;[SELFMADE]
A 1

ftp://ftpcard:card@192.168.10.1/

48 4 The typical structure of a label

An FTP user ftpcard always accesses the printer’s default memory. This can point to the internal IFFS, or an
external USB or SD-CARD root directory.

Here it is assumed that the password still has the default setting card. This default should be changed for security
reasons! Therefore you have to use the IP of your printer instead of 192.168.10.1 and your password instead of
card which you have set in the printer settings.

If an external storage medium is used, it should contain the subdirectories fonts, images, labels and misc
in order to be accepted by the printer. If these directories do not exist, the printer will create them auto-
matically. However, files are not automatically moved to the appropriate directories. They are simply not
found.

The storage medium should be formatted with FAT16 or FAT32. However, FAT16 has a limitation of 8 capital
letters for the file name, so you should format the storage media with FAT32 (explanations about the formats can
be found in the Wikipedia).

In internal memory (IFFS) and when using FAT32 formatted external media, the maximum length of file names is
limited to 50, even if the formats would allowmore. There is not enough space in the printer’s display to display
more than 50 Unicode characters, the file names would be truncated.

In our example we save the layout as:

labels/LayoutVorlage.lbl

The label stored in the printer memory can be loaded with a JScript command:

M l LBL;Dateiname

TheM initiates all accesses to the memory. As parameter follows “l LBL;” (lower case l followed by the capital
letters LBL and a semicolon). The small l stands for load and LBL for a JScript file. The file namemust not have an
extension, otherwise the file will not be found.13

4.4.4 Fill in new content

Loading a layout alone makes little sense for dynamic printing projects. Now the values/contents are to be
changed. Todo this, use theReplaceCommandR. If all valuesarenewly set, theprintout canbemade.

The field name is added to the R, separated by a semicolon, and the new content is inserted at the position to
which the fieldnamepoints. Theold content is always replaced. The result is shown in figure4.17.

13WithM l LBL;filename.LBL the printer would search for filename.LBL.LBL.

https://en.wikipedia.org/wiki/File_Allocation_Table

4 The typical structure of a label 49

Figure 4.17: The layout filled with new content

Figure 4.18: cabLabel S3makes creating a layout template easy. By checking Generate Replace template you will not only get the JScript
code for the layout, but also an example of a control file for e.g. a PLC.

1 M l LBL;LayoutVorlage
2 R PARTNO;5977008
3 R PROD;SQUIX 4/600MP
4 R RESOL;600 dpi
5 R SERNR;164162038304
6 A 1

Listing 4.14: The layout template is loaded. Subsequently, contents are updated.

M l LBL;LayoutVorlage
R PARTNO;5977008
R PROD;SQUIX 4/600MP
R RESOL;600 dpi
R SERNR;164162038304
A 1

50 4 The typical structure of a label

4.5 Summary or J SHOW BIG A

We learned how to create a layout and how to change the elements contained in it later. Of course, you could
also print a label written in JScript without the detour of uploading, re-reading and modifying. In any case,
the printing is only triggered by the final capital letter A. So JScript only starts printing when we enter an A
command.

Using this mnemonic “J SHOT BIG A” you can easily remember the correct order of the typical commands of a
label.

1. With J the job is started.
2. With S you set the size so that the printer knows how to arrange the following elements.
3. With H you define the print speed and the heat level.
4. UseO to select options such as 180° rotation.
5. Then follow withW (or T) the text boxes (or elements),
6. with B the barcodes,
7. with I the images and
8. with G the graphic elements (circles, lines, rectangles).

The commands T, B, I and G can bemixed with each other, their sequence is arbitrary as long as S, H and O
precede them.

9. With A the output is then started.

Labels can be completed without printing with the A command.

A [NOPRINT]

Afterwards thecontent canbeadapteddynamicallywith theReplacecommand, e.g. byaPLC.

� After an A command are until the next J command no longer allows for object-generating uppercase
commands (after print preparation, contents can only be changed, but no new elements can be added).

5 Special functions 51

5 Special functions

A dynamic label is not only the possibility to change the contents of a label with the Replace command. With its
special functions, JScript offers an extremely wide range of possibilities, for example to have the printer calculate
contents.

5.1 Syntax of the special functions

5.1.1 Include in square brackets

Basically, special functions can only be used within a content (e.g. in a text, a barcode or a file name for a
graphic). The special functions then have an effect on the content similar to a function in other programming
languages. The special function is indicated by enclosing square brackets. The square brackets are removed
from the contents with the special function contained therein and replaced by a return value if the called special
function returns a return value.

This can look like this, for example:

T 20, 10, 0, 3, 8;Today is [DATE].

Here a text is printed, at position (20,10) with the font Swiss 721 (font number 3) and a font size of 8 units. In the
content [DATE] is removed and replaced by the current date, the return value of the special function DATE. The
text around it is retained, so that the label contains a complete sentence (including the dot at the end), which
always contains the date of printing.14

5.1.2 Pass function parameters

The function canalso evaluateoneormoreparameters (calledarguments inprogramming languages), depending
on the special function. The DATE function can handle up to three arguments.

T 20, 20, 0, 3, 8;Tomorrow is [DATE:1].

For theDATE function, the first argument gives a date offset in days. Positive values indicate the future. The second
argument gives the offset in months, the third in years. The values can be mixed.

T 20, 30, 0, 3, 8;Next month we have [DATE:0,1].
T 20, 40, 0, 3, 8;Next year we have [DATE:0,0,1].
T 20, 50, 0, 3, 8;Yesterday was [DATE:-1].

The arguments are separated by commas.

14If multiple labels are printed without using the single-buffer mode, and if a print started the day before is continued, the date of the
previous day will be printed.

52 5 Special functions

5.1.3 Use field names as special function

If a field name is written in square brackets which does not correspond to one of the existing special functions,
then the system searches for a JScript line whose content was marked with exactly this name. The return value is
the content to which the field name points.

T:Name; 20, 10, 0, 3, 4;Fischers Fritze[I]
T 20, 15, 0, 3, 4;[Name] fischt frische Fische.

In this example the function name is required, but it does not exist. The JScript interpreter then searches for a
field name Name and finds it one line above. Thus the sentence “Fischers Fritze fischt frische Fische.” is printed (a
common german tongue twister).

The special function Imakes the entire line invisible. Therefore only the sentence from the lower line appears on
the label (see section 5.2).

Such a referencing via the field name can also be used with one or two parameters. If parameters are used, they
cut out a section of the return value. The first parameter is the position fromwhich characters are taken. The
second parameter specifies the number of characters.

� If start position and length are specified for a field name referencing, these parametersmust be separated
from the field name by commas, not by a colon as is done for function names.

For clarification another example.

T:Name; 20, 10, 0, 3, 4;Fischers Fritze[I]
T 20, 15, 0, 3, 4;[Name,10,5] fischt frische Fische.

Here “Fritz fischt frische Fische.” will be the result.

5.1.4 No nestings

Special functions cannot be nested. This means, that no further special function may be used as argument of a
special function. It is therefore not allowed to use the following code:

; totally wrong!
T:Anzahl; 20, 10, 0, 3, 4;4[I]
T 20, 15, 0, 3, 4;Twice of [Anzahl] is [*:2,[Anzahl]].

But some functions allow field names as arguments, but you must not use brackets. The following code would
be allowed:

; so much better...
T:Anzahl; 20, 10, 0, 3, 4;4[I]
T 20, 15, 0, 3, 4;Twice of [Anzahl] is [*:2,Anzahl].

5 Special functions 53

5.2 Hiding elements

We have already seen that you can make the line invisible with [I]. This way you can hide lines, which are needed
only for passing values. Here is an example to illustrate this.

T:GEWICHT; 0, 0, 0, 3, 5;10[I]
T 30, 20, 0, 3, 8;Gewicht: [GEWICHT] kg

In this casewe reference the first linebya fieldnameGEWICHT, towhichaPLCcanbeconnected. E.g. by

R GEWICHT;20

you can set the weight to 20 kg. The invisibility is preserved in such a case, only the actual value is changed
from 10 to 20. The line with the text in front and behind is printed, but a PLC only has to pass the pure numerical
value.

5.2.1 Conditional visibility

The I function allows one more optional argument. If it is 0, the line will not be invisible. Thus a conditional
visibility is realizable, as shown in listing 5.1.

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5 T:drink; 5, 20, 0, 3, 10;Apple juice
6 T:sugar; 0, 0, 0, 3, 3;98[I]
7

8 ; Do not hide if sugar > 0
9 T 5, 30, 0, 3, 5;Sugar content: [sugar] g/l[I:!sugar]

10

11 ; Hide if sugar > 0
12 T 5, 30, 0, 3, 3;Warning: This drink is not suspected of promoting[I:sugar]
13 T 5, 35, 0, 3, 3;obesity in children![I:sugar]
14

15 A 1
16 R drink;Mineral water
17 R sugar;0
18 A 1

Listing 5.1: Conditional Visibility

A field name must be used as argument. If the content, to which the field name refers, differs from 0 (nu-
meric zero), the condition becomes true and the [I:Fieldname] special function unfolds its effect. By placing
an exclamation mark in front of the field name, the condition is reversed (invisible if content is numerically
zero).

Always use numeric values (0 and 1) or a logical operation, but never a string. The strings “true”, “false”, “yes”, “no”,
“to” and “off”areall identical for theJScript interpreter (theynumerically correspond to zero).

In this way, images (e.g. danger symbols) can also be shown or hidden selectively.

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
T:drink; 5, 20, 0, 3, 10;Apple juice
T:sugar; 0, 0, 0, 3, 3;98[I]

; Do not hide if sugar > 0
T 5, 30, 0, 3, 5;Sugar content: [sugar] g/l[I:!sugar]

; Hide if sugar > 0
T 5, 30, 0, 3, 3;Warning: This drink is not suspected of promoting[I:sugar]
T 5, 35, 0, 3, 3;obesity in children![I:sugar]

A 1
R drink;Mineral water
R sugar;0
A 1

54 5 Special functions

Here is another example. Labels with a width of 80 mm and a height of 20 mm are processed to create name
tags for sticking on. The data comes from a software which sends the following file to the printer (listing
5.2).

1 M l LBL;LayoutNamensschilder
2

3 R Company;Musterfirma GmbH
4 R Sex;male
5 R Name;Anton Müller
6 A 1
7 R Name;Bernhardt Schmidt
8 A 1
9 R Sex;female

10 R Name;Lydia Weber
11 A 1
12

13 R Company;Firma hinterm Deich AG
14 R Sex;female
15 R Name;Antonia Fischer
16 A 1

Listing 5.2: JScript code as it could be sent by a database system

What could thecorresponding layout look like? Apossible solutionwouldbe listing5.3.

1 m m
2 J
3 S 0, 0, 20, 23, 80
4 H 100, 5
5

6 ; variables (all invisible)
7 T:Company; 0, 0, 0, 3, 4;Beispielfirma GmbH[I]
8 T:Sex; 0, 0, 0, 3, 4;female[I]
9 T:Name; 0, 0, 0, 3, 4;Martina Musterfrau[I]

10

11 ; the logic part
12 T:WennMann; 0, 0, 0, 3, 4;[==:Sex,male][I]
13

14 ; name with salutation
15 T 5, 10, 0, 3, 6, b;Mr. [Name][I:!WennMann]
16 T 5, 10, 0, 3, 6, b;Ms. [Name][I:WennMann]
17

18 ; company name
19 T 5, 15, 0, 3, 4;[Company]
20

21 A [Preview]

Listing 5.3: The layout template for the name tags contains two texts, of which only one is printed at a time

In lines 7 to 9, three invisible texts are created, into which the Replace command is later used to write. In line 12 a
string comparison takes place. If the character string “male” is in the field Sex, the return value of the compare
function is 1, otherwise 0.

The lines 15 and 16 are interesting: Here “Mr. …” is printed, but this print becomes invisible if the content of the

M l LBL;LayoutNamensschilder

R Company;Musterfirma GmbH
R Sex;male
R Name;Anton Müller
A 1
R Name;Bernhardt Schmidt
A 1
R Sex;female
R Name;Lydia Weber
A 1

R Company;Firma hinterm Deich AG
R Sex;female
R Name;Antonia Fischer
A 1

m m
J
S 0, 0, 20, 23, 80
H 100, 5

; variables (all invisible)
T:Company; 0, 0, 0, 3, 4;Beispielfirma GmbH[I]
T:Sex; 0, 0, 0, 3, 4;female[I]
T:Name; 0, 0, 0, 3, 4;Martina Musterfrau[I]

; the logic part
T:WennMann; 0, 0, 0, 3, 4;[==:Sex,male][I]

; name with salutation
T 5, 10, 0, 3, 6, b;Mr. [Name][I:!WennMann]
T 5, 10, 0, 3, 6, b;Ms. [Name][I:WennMann]

; company name
T 5, 15, 0, 3, 4;[Company]

A [Preview]

5 Special functions 55

fieldWennMann does not differ (exclamation mark) from 0 (numeric zero). If we want to print a text, we must not
hide it, so the condition must be reversed by the preceding exclamation mark. We use the same logic in line 16,
where we hide the text “Ms. …”, if the conditionWennMann is true.

5.3 Ask the operator

The questionmark leads to a dialog prompt on the printer display. The operator can then enter an answer on the
display, accept thedefault value, ormakeanentryusingaUSBkeyboardorUSBbarcodescanner.

T:AUFTRAG; 0, 0, 0, 3, 5;[I][?:scan production docket]

With this line of code, “scan production docket” is shown on the display and the operator must enter a value. He
can use a USB barcode scanner for this purpose. The (scanned) value can be used later in the JScript code with
[AUFTRAG].

After the text to be displayed, a default value can be passed, separated by commas, which the operator then only
has to confirm by tapping the ENTER button.

T 0, 0, 0, 3, 5;[I][?:enter password,123456]

After the default value, you specify how often the specification is used before it must be re-entered. The de-
fault value is 1, so the input must be re-entered after each print. The last entered value is used as the new
default value, so that the operator only has to tap the ENTER symbol when the same entry is used several
times.

T 0, 0, 0, 3, 5;[I][?:enter PIN,0000,1,M!1111]

Here a four-digit input consisting of digits without spaces is required. A fourth parameter starting with “M”
describes the permitted characters (input-mask). The exclamation mark prohibits the use of a space, the digit
1 stands for a number (more precisely a single digit). So the query here must consist of exactly four digits and
must not contain a space.

The special function to query the display can be provided with many more arguments, for example to allow only
a fixed number of certain characters. In the appendix you will find a more detailed description in the table on
page 137.

Exercise 5.1 Handwritten name badges in stand-alone operation � S. 142

Design labels as shown in Figure 4.7 on page 34 and modify the print job so that the label file can be
stored on the printer for stand-alone operation. Copy the file to the printer memory (USBmemory stick,
SD card or IFFS) and recall the label from the printer. The names and the companies should be queried.
After that one label at a time should be printed and immediately asked for the next name. The old name
should appear as the new default value, in case someone wants to print a second label. The same applies
to the company name.

56 5 Special functions

5.4 Dynamic date and time functions

We have already learned about the date function DATE. It inserts the current date, always in the format that
corresponds to the country setting on the printer.

If you want to define the format yourself, e.g. the month as two digits followed by a dash and a four-digit year
value, you have to combine several other date functions.
T 20, 30, 0, 3, 8;Filled on: [MONTH02]/[YYYY]

5.5 Adding a time offset

All date functionsallowup to threearguments,whichgive theoffset indays,monthsandyears.
T 20, 40, 0, 3, 8;Best before: [MONTH02:0,6]/[YYYY:0,6]

A date is output here as before, but with a 6-month offset. The offset must be carried out in the same way for
each function if several functions are combined into one display.

Time functions allow an offset in up to three arguments, hours, minutes and seconds.
T 20, 50, 0, 3, 8;Three hours ahead it will be [H024:3]:[MIN:3].

5.6 Using counter

Counters are created with the SER function. The arguments are:

1. First value (will be printed onto the first label).
2. Increment value (steps between each label).
3. Stepping frequency (after this amoung of labels a stepping is done).

The start value must be specified, the two further arguments are assumed by the printer to be 1 if they are not
specified.

The counter works like a mechanical numbering machine. When using the function SER, the first argument also
determines the maximum number of digits by preceding zeros. Thus [SER:001] counts starting from 001 up
to 999 and then falls back to the value 000. As a mechanical work would behave. Thus, the counter returns 001,
002, 003, 004, …, 997, 998, 999, 000, 001, 002, …

If you don’t want leading zeros in print, you have to use the D Use function for the minimum number of digits
to be printed. But this can only work with a calculation with which SER function the C and D are compatible
Functions not. In the code example in listing 5.5 we see such a solution in line 7, where additionally an addition
with a start value from a query was realized.

Exercise 5.2 Complex numbering of packages � S. 142

20 components should be distributed evenly over 4 boxes. You want to print 100 mmwide and 10 mm
high labels for identification and glue them on two opposite sides of a carton. Five components are
packed in each of the four cartons. Each label is to be marked “01 to 05 of 20”. Two copies of each label
(for two opposite sides of a box). The next carton would then have two labels with the inscription “06 to
10 of 20”. Complete the entire print in a single JScript file ending in “A 8”.

5 Special functions 57

5.7 Remember the counter value

This operation is equivalent to a value added from outside and used as a starting value. Unfortunately the code
in listing 5.4 does not work like this.

1 m m
2 J
3 O R
4 S l1; 0, 0, 68, 71, 100
5 T:start; 0, 0, 0, 3, 5;[I][?:Enter start value,98]
6 ; That will be a complete flop:
7 T 10, 50, 0, 5, 40;[SER:start]
8 A 4

Listing 5.4: The serial number function must not be used in this way

The idea would be that a starting value could be entered by the user. In principle a good idea, but the SER
Function does not support referencing.

But there is hope (listing 5.5).

1 m m
2 J
3 O R
4 S l1; 0, 0, 68, 71, 100
5 T:start; 0, 0, 0, 5, 5;[?:Enter start value,98][I]
6 T:offset; 0, 0, 0, 5, 5;[SER:000][I]
7 T 10, 50, 0, 5, 40;[+:start,offset][D:1,0]
8 A 4

Listing 5.5: Setting a counter value the right way

If the operator accepts the default value of 98, the printer delivers four labels with the imprint 98, 99, 100, 101.
The D function makes sure that no leading zeros are printed.

5.8 Calculations and comparisons

As shown in the previous example, you can also do calculations in JScript. There are the functions +, -, *, /,%
and many others. The special functions = and == compare the numeric value or string for equality. See the
Programming Guide for a complete list.

Here is a small example (listing 5.6 and figure 5.1).

m m
J
O R
S l1; 0, 0, 68, 71, 100
T:start; 0, 0, 0, 3, 5;[I][?:Enter start value,98]
; That will be a complete flop:
T 10, 50, 0, 5, 40;[SER:start]
A 4

m m
J
O R
S l1; 0, 0, 68, 71, 100
T:start; 0, 0, 0, 5, 5;[?:Enter start value,98][I]
T:offset; 0, 0, 0, 5, 5;[SER:000][I]
T 10, 50, 0, 5, 40;[+:start,offset][D:1,0]
A 4

58 5 Special functions

Figure 5.1: The result is 1 if they match, otherwise 0

1 m m
2 J
3 S l1; 0, 0, 68, 70, 100
4 H 150, 0
5

6 T:VAR1; 5, 20, 0, 5, pt20;42
7 T:VAR2; 5, 30, 0, 5, pt20;[*:6,7]
8 T 15, 45, 0, 5, pt20;=
9 G 10, 33, 270;L: 15, 2, s, a

10 T 8, 60, 0, 5, 10;[=:VAR1,VAR2]
11

12 T 55, 20, 0, 5, 10;[VAR1]
13 T 55, 30, 0, 5, 10;[VAR2]
14 T 75, 45, 0, 5, 10;==
15 G 68, 33, 270;L: 15, 2, s, a
16 T 65, 60, 0, 5, 10;[==:VAR1,VAR2]
17

18 A 1

Listing 5.6: Comparison of numerical values

It shows the multiplication (line 7 as [*:6,7]), the value comparison (left as [=:VAR1,VAR2]) and the
string comparison (right as [==:VAR1,VAR2]). If you compare the values, 42.00 is identical with 42, if you
compare the strings “42.00” with “42”, there is no match. Here you have to be a bit careful what you compare and
how.

For clarificationonceagainwith stringsas contentsof the fields (listing5.7 and illustration5.2).

m m
J
S l1; 0, 0, 68, 70, 100
H 150, 0

T:VAR1; 5, 20, 0, 5, pt20;42
T:VAR2; 5, 30, 0, 5, pt20;[*:6,7]
T 15, 45, 0, 5, pt20;=
G 10, 33, 270;L: 15, 2, s, a
T 8, 60, 0, 5, 10;[=:VAR1,VAR2]

T 55, 20, 0, 5, 10;[VAR1]
T 55, 30, 0, 5, 10;[VAR2]
T 75, 45, 0, 5, 10;==
G 68, 33, 270;L: 15, 2, s, a
T 65, 60, 0, 5, 10;[==:VAR1,VAR2]

A 1

5 Special functions 59

Figure 5.2: Apples and pears both yield 0 when converted to numerical values, which is numerically identical

1 m m
2 J
3 S l1; 0, 0, 68, 70, 100
4 H 150, 0
5

6 T:VAR1; 5, 20, 0, 5, pt20;Äpfel
7 T:VAR2; 5, 30, 0, 5, pt20;Birnen
8 T 15, 45, 0, 5, pt20;=
9 G 10, 33, 270;L: 15, 2, s, a

10 T 8, 60, 0, 5, 10;[=:VAR1,VAR2]
11

12 T 55, 20, 0, 5, 10;[VAR1]
13 T 55, 30, 0, 5, 10;[VAR2]
14 T 75, 45, 0, 5, 10;==
15 G 68, 33, 270;L: 15, 2, s, a
16 T 65, 60, 0, 5, 10;[==:VAR1,VAR2]
17

18 A 1

Listing 5.7: String comparison

Exercise 5.3 Variable number of packages � S. 143

Design two numbering labels on opposite sides of a box, as required in Exercise 5.2. However, modify
the JScript file so that a dialog on the printer asks for the total number of pieces to be packaged and the
number of pieces per box. The labels are then printed.

5.9 Format strings or numbers

If you want to format a number, it must be the result of a calculation. If there is no calculation at hand, you can
multiply by 1 or add 0. Formatting is then done with the D Function, which expects the number of integer and
decimal places as arguments. With the C function you can still define how to fill up to the required number of
digits in the front.

m m
J
S l1; 0, 0, 68, 70, 100
H 150, 0

T:VAR1; 5, 20, 0, 5, pt20;Äpfel
T:VAR2; 5, 30, 0, 5, pt20;Birnen
T 15, 45, 0, 5, pt20;=
G 10, 33, 270;L: 15, 2, s, a
T 8, 60, 0, 5, 10;[=:VAR1,VAR2]

T 55, 20, 0, 5, 10;[VAR1]
T 55, 30, 0, 5, 10;[VAR2]
T 75, 45, 0, 5, 10;==
G 68, 33, 270;L: 15, 2, s, a
T 65, 60, 0, 5, 10;[==:VAR1,VAR2]

A 1

60 5 Special functions

Assuming[value] points to 123.4567, then[*:1,value][C:0][D:5,0] returns the result “00123”. Note
that the dot is considered a decimal separator, even if the country setting is Germany instead of the USA.
[*:1,value][C:][D:5,2] returns “ 123.45”, with two leading spaces and without commercial round-
ing.

If you want a defined rounding instead of truncation, you can use the R function.
[*:1,value][C:][D:5,2][R:m]would yield “ 123.46”.

If there are more places before the decimal point than given, all places are printed.
[*:1,value][C:][D:1,3][R:m] returns “123.457”.

Without the C and/or D Function rounds the function R always to two places.
[*:1,value][R:m]would result in “123.46”.

A character string can be freed from leading or trailing spaces with the TRIM function. With J you can arrange
texts left, center or right. As an argument, after the lowercase letter l, c or r, you have to specify the area (in the
selected unit of measurement) over which the alignment should take place. [J:c50] centers the text over 50
mm (or inches, depending on the country setting). You can find an example of the use of the alignment in the list
4.4 on page 33. There a text in the code lines 22 to 25 is aligned right.

5.10 Avoid rounding errors

If a calculation has several steps, you need several lines in JScript, because you cannot nest special functions.
Usually you use invisible text lines and assign field names ending with a consecutive number, e.g. “ZS1” for the
first intermediate step. cabLabel S3 uses letters.

The problem with these intermediate steps in JScript is that (unless otherwise defined) each result is output
as a floating point number with two decimal places. The contents behind the field names are always strings in
JScript, since they are derived from text.

But even with a simple rule of three, this can lead to problems. Let us assume we want to buy screws. Last
time we bought 750 screws and paid 7,49 € for them. But today we need the double amount of 1500 screws.
Now one could assume that we, with a rule of three calculation, also have to pay the double price, so exactly
14.98 €. If we look at the result of the calculation within the JScript label, a very special offer seems to work
(listing 5.8).

Figure 5.3: Today everything for free – JScript must be kidding?

https://en.wikipedia.org/wiki/Rounding

5 Special functions 61

1 J
2 S l1; 0, 0, 68, 71, 100
3 H 100, 0
4 O R
5 T 10, 10, 0, 5, 8;Schraubenkauf
6 T 10, 20, 0, 3, 4;Stückzahl zuletzt:
7 T:AnzahlZG; 10, 20, 0, 3, 8;[J:r80][?:Zuletzt gekauft (Stück),750]
8 T 10, 30, 0, 3, 4;Dafür ausgegeben (EUR):
9 T:GPZG; 10, 30, 0, 3, 8;[J:r80][?:Dafür bezahlt (EUR),7.49]

10 G 10, 35, 0;L: 80, 1
11 T 10, 45, 0, 3, 4;Neue Anzahl:
12 T:AnzahlNEU; 10, 45, 0, 3, 8;[J:r80][?:Anzahl jetzt (Stück),1500]
13 T 10, 55, 0, 3, 4;Neuer Gesamtpreis (EUR):
14

15 ; now we calculate a rule of three in JScript
16 T:Einzelpreis; 0, 0, 0, 3, 3;[I][/:GPZG,AnzahlZG]
17 T:GPNEU; 0, 0, 0, 3, 3;[I][*:Einzelpreis,AnzahlNEU]
18

19 ; print the result
20 T 10, 55, 0, 3, 8;[J:r80][GPNEU]
21 A 1

Listing 5.8: Caution with multi-step calculation and disregarding the intermediate result formatting

Exercise 5.4 Avoid errors in multi-step calculations � S. 144

Change the listing 5.8 so that a correct result is calculated.

5.11 Inserting UNICODE characters

The special function U needs a number as argument and returns the corresponding Unicode character. Thus
[U:8364] returns a Euro currency symbol. You can also specify the hexadecimal value, then a dollar sign has
to be put in front. So [U:$20AC] also results in the Euro currency symbol.

A list of all official Unicode characters can be found here:
http://www.unicode.org/charts/

But you should check if very exotic Unicode characters are defined in the used font. Not all fonts return a unicorn
face for the character [U:$1F984].

Fonts with many UNICODE characters can also slow down the processing of a label if they are sent to the printer
togetherwith the print job. For example, the “Arial Standard” font file is only 756KB in size, while the “Arial Unicode
MS Standard” font requires 22.1 MB of disk space, almost thirty times as much.

Large TrueType font files should be kept on the printer and should only be included in the job using the M l
fnt;. . . and F command.

J
S l1; 0, 0, 68, 71, 100
H 100, 0
O R
T 10, 10, 0, 5, 8;Schraubenkauf
T 10, 20, 0, 3, 4;Stückzahl zuletzt:
T:AnzahlZG; 10, 20, 0, 3, 8;[J:r80][?:Zuletzt gekauft (Stück),750]
T 10, 30, 0, 3, 4;Dafür ausgegeben (EUR):
T:GPZG; 10, 30, 0, 3, 8;[J:r80][?:Dafür bezahlt (EUR),7.49]
G 10, 35, 0;L: 80, 1
T 10, 45, 0, 3, 4;Neue Anzahl:
T:AnzahlNEU; 10, 45, 0, 3, 8;[J:r80][?:Anzahl jetzt (Stück),1500]
T 10, 55, 0, 3, 4;Neuer Gesamtpreis (EUR):

; now we calculate a rule of three in JScript
T:Einzelpreis; 0, 0, 0, 3, 3;[I][/:GPZG,AnzahlZG]
T:GPNEU; 0, 0, 0, 3, 3;[I][*:Einzelpreis,AnzahlNEU]

; print the result
T 10, 55, 0, 3, 8;[J:r80][GPNEU]
A 1

http://www.unicode.org/charts/
https://www.unicode.org/charts/PDF/U1F900.pdf
https://www.unicode.org/charts/PDF/U1F900.pdf

62 5 Special functions

Figure 5.4: Some rare UNICODE characters

5.12 Single buffer mode

With the parameter S of the O command, the single label buffer option can be enabled. Normally, the printer
pre-calculates as many labels as possible in advance for faster printing (no delay between printing single
labels).

However, if a special function is part of a dynamic label, the calculation is only performed at the beginning of the
process, and is thenapplied toall subsequent labels (if sufficientbuffermemory is available).

You can see the effect in the following JScript code (listing 5.9), which uses BASIC to insert a delay of two seconds
between the simulated pressing of the dispense button. Everything that is printed in the BASIC code with the
command PRINT is sent to the JScript interpreter as a JScript line, so it is treated as if we had sent the code to
the printer from outside. The command POKE("io.xin") simulates the keystroke on the demand key in
dispense mode.

1 <ABC>
2 PRINT "m m"
3 PRINT "J"
4 PRINT "S l1; 0, 0, 68, 71, 100"
5 PRINT "H 150, 0"
6 REM option J = request labels by keystroke (force "print on demand" mode)
7 PRINT "O J"
8 PRINT "T 10, 40, 0, 5, 10;[TIME]"
9 PRINT "A"

10 FOR i = 1 TO 3
11 PAUSE 2
12 POKE("io.xin"), "START"
13 NEXT
14 END
15 </ABC>

Listing 5.9: Keystrokes made with BASIC

If you are confused about the BASIC lines, here is the pure JScript code (listing 5.10). Start it and press the trigger
yourself several times with a pause of about two seconds.

<ABC>
PRINT "m m"
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 150, 0"
REM option J = request labels by keystroke (force "print on demand" mode)
PRINT "O J"
PRINT "T 10, 40, 0, 5, 10;[TIME]"
PRINT "A"
FOR i = 1 TO 3
 PAUSE 2
 POKE("io.xin"), "START"
NEXT
END
</ABC>

5 Special functions 63

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5 O J
6 T 10, 40, 0, 5, 10;[TIME]
7 A

Listing 5.10: One label with demand button on the display

Exercise 5.5 Effect of the single buffer mode

Send the code from listing 5.9 to the printer and watch the printout. Now switch the printer to single
buffer mode by changing line 7 to :

7 PRINT "O J, S"

Send the code to the printer again. What changes? If you see no difference, the option “single buffer
mode” may set on in the printer’s menu. Turn it off to and try again if both printouts didn’t differ.

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
O J
T 10, 40, 0, 5, 10;[TIME]
A

64 6 Using the different memories

6 Using the different memories

If you want to remember values between the individual print jobs, e.g. the counter value of the last label printed,
you have the choice between different storage locations. You can create a file and write the values into it. Or you
can use one of the predefined memories.

6.1 The useful user memory

Creating a file and constantly writing to this file has a major technical disadvantage. Flash memories, such as
an SD card, a USBmemory stick or the internal IFFS have the technical characteristic of abrasion during write
operations. While it is possible to read from a flash medium almost as often as desired, the writing processes are
limited.

For this reason the cab printers have a user memory in the RAM of the battery backed up real time clock. It is
not affected by abrasion, it can be written as often as you like. However, the memory is only 32 bytes large and
global, i.e. shared by all JScript files (labels).

If global availability is no problem, [WUSER] and [RUSER] can be used to write to and read from the memory (see
listing 6.1).

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 T:XVAL; 10, 10, 0, 3, 3;[RUSER][I]
5 T:SERNO; 10, 10, 0, 3, 3;[+:XVAL,1][D:0,0][I][WUSER]
6 T 10, 20, 0, 3, 8;Serial Number: [SERNO]
7 A 4

Listing 6.1:Write values into the user memory and read them out again

6.2 The “I have finished!” info memory

Instead of using [WUSER] in the 32 bytes user memory, you can also write to the information memory. This is
done with [WINF]. The big difference to [WUSER] is that there is no [RINF] function. The Info memory can only be
read out using the escape function Esc i.

The special feature is that the actual writing process in the 128 bytes of volatile memory (RAM) only takes place
after the label has been completely printed and (if working in the dispense mode) dispensed. If, for example,
each label is provided with an unique serial number, this number can be written to the info memory. A PLC can
then read the serial number with the appropriate escape command and ensure that the label was printed and (if
provided) also dispensed.

6.3 Using a file to store a value

If you want to use a file as storage location, you can name the file yourself. This has the advantage that different
JScript label jobs do not have to share a commonmemory. For example, different layouts for different product
labels could each remember their own counter without affecting each other.

m m
J
S l1; 0, 0, 68, 71, 100
T:XVAL; 10, 10, 0, 3, 3;[RUSER][I]
T:SERNO; 10, 10, 0, 3, 3;[+:XVAL,1][D:0,0][I][WUSER]
T 10, 20, 0, 3, 8;Serial Number: [SERNO]
A 4

6 Using the different memories 65

If a file is to be used, by the “E TMP;. . . ” command (capital letter E), the file name (without file extension) must be
defined first. After that, you can write and read with [WTMP] and [RTMP].

Writing to a file cannot be done in IFFS, a USB memory stick, SD card or WebDAV drive must be used. The
command always refers to the default memory. If the IFFS is selected as default memory, an error message is
displayed.

6.3.1 Using a TMP file

With a TMP file, the contents are completely overwritten with each write operation. So the file always contains
only the last written content, which is limited to a length of 128 bytes.

Theexample shown forusermemory canalsobe implementedwitha file as storage location (listing6.2).

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 E TMP;KillMyFlash
5 T:XVAL; 10, 10, 0, 3, 3;[RTMP][I]
6 T:SERNO; 10, 10, 0, 3, 3;[+:XVAL,1][D:0,0][I][WTMP]
7 T 10, 20, 0, 3, 8;Serial Number: [SERNO]
8 A 4

Listing 6.2: Saving a value to a TMP file

Newhere is line number 4, where the file name tobeused is defined (KillMyFlash.TMP in the subdirectory /misc). As
alreadymentioned in thenameyoushouldconsiderwriting toa flashmemorynot toooften.

6.3.2 Filling a LOG file

A LOG file can be handled in the same way as a TMP file. But there is only one [WLOG] special function and no
[RLOG]. So you can only write to the file. But for this the write operations limited to 128 bytes are appended, the
file content is kept and the new content is added as a new line.

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 E LOG;INFO
5 T:VAL; 5, 6, 0, 3, 3;[SER:0001][I]
6 T:PRINT; 5, 15, 0, 3, 3;Label [VAL] printed on [DATE] at [TIME].[WLOG]
7 A 3

Listing 6.3: Logging into a file

m m
J
S l1; 0, 0, 68, 71, 100
E TMP;KillMyFlash
T:XVAL; 10, 10, 0, 3, 3;[RTMP][I]
T:SERNO; 10, 10, 0, 3, 3;[+:XVAL,1][D:0,0][I][WTMP]
T 10, 20, 0, 3, 8;Serial Number: [SERNO]
A 4

m m
J
S l1; 0, 0, 68, 71, 100
E LOG;INFO
T:VAL; 5, 6, 0, 3, 3;[SER:0001][I]
T:PRINT; 5, 15, 0, 3, 3;Label [VAL] printed on [DATE] at [TIME].[WLOG]
A 3

66 6 Using the different memories

Exercise 6.1 A CSV file as protocol of all printouts � S. 145

You have a donation run with many runners to look after. The runners who want to take part in the run
can pay a starting fee/donation on site and will be assigned a starter number automatically. They leave
their address in order to receive a certificate later on.

Create a JScript file that assigns an unique number to each runner starting with number 1. The runners
enter their names in a dialog on the printer (a SQUIX with USB keyboard). You will receive a 100 mmwide
and 68 mm high label with your name and starter number.

For the event manager the printer should create a file on a USB stick with the following content in CSV
format: “start number”, “first name”, “name”, “street”, “house number”, “postcode”, “residence”, “date of
entry” and “time of entry”. The CSV file already exists at the start of the event and consists of the first line
with the field names. The JScript file should therefore only append the respective data record.

The runners may decide during the input whether the first and last name should be printed completely
on the label next to the start number or whether the last name should be abbreviated with the first letter.
After input, printout and data storage, the input process starts again.

Exercise 6.2 The cherry on top for the JScript expert � S. 146

Complete the previous exercise so that the font size for the name on the name tag is automatically set so
that the name appears completely on the label.

Hint: Look in the programming guide for the special command [LEN:field name] and work with
conditional visibility.

Save the print job under the name “DEFAULT.LBL” so that it starts automatically when the printer is
switched on. Design the start number assignment so that accidentally switching off and restarting the
printer does not confuse the start numbers.

https://en.wikipedia.org/wiki/CSV_(file format)
https://en.wikipedia.org/wiki/CSV_(file format)
https://www.cab.de/programmierung

7 The most common Escape commands 67

7 The most common Escape commands

In this manual only the most important escape commands will be described. For a complete list please refer to
the Programming Guide.

Escape commandsprovide analternative approach to communicatingwith theprinter. Themaindifference to the
“normal” JScript is that it is not line-oriented, andescapecommandsareprocesseddirectly.

They are usable on all interfaces where JScript is received. However, they never reach the JScript interpreter,
the software in the printer that processes JScript lines. Instead, they are filtered out by the respective in-
terfaces and processed directly. If an escape command returns an answer, it comes directly from the same
interface.

It is possible to merge escape commands into the JScript code. But this is not absolutely necessary. Escape
commands can also be used alone on an interface without sending additional JScript code. For example, a PLC
can query the status via an interface such as RS232 with the printer using escape commands, while the print
data is sent as JScript code over the network from a PC.

7.1 Interrupt the printing process (Esc p1 and Esc p0)

Pressing the pause button on the printer can also be done via one of the data interfaces. To do this, send
the character string Esc p1 to a JScript interface to set the printer to pause mode and Esc p0 to end the
pause.

This means the character strings consisting of the special character Esc , i.e. the ASCII character no. 27, the
lower case letter p and the number 1 or 0 (hexadecimal 1B 70 3016 or 1B 70 3116).

If a printer is set to the Pause state, it still finishes the current label to be printed and then interrupts the
current job. This ensures that no label is printed incompletely. The Esc t command described below, on
the other hand, immediately interrupts all printing activity, even if this means that a label is not completely
printed.

7.2 When nothing works at all (Esc t and Esc ! Esc !)

Via one of the interfaces you can send the sequence Esc t (ASCII values 27 and the lower case letter “t”, or
hexadecimal 1B 7416). The printer will then reset as if the Cancel key had been pressed for at least three sec-
onds15.

If this does not help yet, you can switch off the printer and restart (reboot). For this purpose send Esc ! Esc ! or
hexadecimal 1B 21 1B 2116.

15Pressing Cancel for three seconds will result in the A+ printer to a cancel with erasing all pending jobs. You can cause the same reaction
on the EOS, SQUIX or Mach 4S by pressing the red symbol with the rejecting hand.

https://www.cab.de/programmierung

68 7 The most common Escape commands

7.3 Query status (Esc s and Esc z)

With Esc s the status of the printer can be queried. Historically, Esc s is the older command and the response
is exactly 9 characters. These have the following meaning:

1. The first letter indicates whether the printer is ready to receive (response is Y) or not (response is N).
2. The second letter is an error code. A “-” (minus character) indicates that there is no error. The detailed

error list can be found in the programming manual and in the appendix on page 138.
3. The numbers in position three to eight in the answer indicate the number of labels still to be printed.
4. The last character is again a letter which indicates whether the JScript interpreter is currently active (Y = yes,

N = no).

Later in the evolution of the script language JScript, the Esc z command was added. It returns twelve letters as
response, which can be either Y (for yes) or N (for no). They indicate:

1. Printer is in pause mode
2. A job is loaded
3. Printer not able to receive more data
4. Label is moving
5. Pre-warning of foils (hardware-dependent)
6. Pre-warning of labels (hardware dependent)
7. Label in dispensing position
8. Label on vacuum plate (hardware dependent)
9. Applicator ready (hardware dependent)
10. External pause signal active (hardware dependent)
11. External Start signal active (hardware dependent)
12. Print head cleaning recommended (cleaning interval reached)

To be able to provide further information in the future, the answer closes with a carriage return character
(hexadecimal 0D16).

For a printer with applicator, the answer after switching on is normally:

NNNNNNNNYNNN<CR>

7.4 Reading from the information memory (Esc i)

To exchange data between a PLC and the printer, and at the same time check whether the label has been dis-
pensed, there is the informationmemory. It is 128characters in sizeandvolatile (part of theRAM).

This memory is filled with the special function [WINF], which writes the contents of the line in which the
function is used to the INF memory.

However, this is only done after the label has been completely finished. Completely output means that for a
label in dispensing mode, the value is only written to the INF memory when it has actually been picked up under
the photocell of the dispensing sensor.

The selected value for the INF memory may also be marked as a non-printable element by additionally adding
the special function [I] to the same line of code.

The option “S” in line 5 is important: If the printer is not working in Single Buffer mode, all labels would
have the same timestamp. If the printing process was started by the night shift, but only four labels were

7 The most common Escape commands 69

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, -2
5 O R, S
6 T:ETINUM; 5, 6, 0, 3, 3;[SER:00001][I][WINF]
7 T 5, 15, 0, 3, 3;Label [ETINUM] printed on [DATE] at [TIME].
8 A 12

Listing 7.1: JScript writes the invisible text from line 6 to the INF memory

printed, the morning shift would find the date and time from the previous day on the 8 labels still to be
printed.

[DATE] and [TIME] from the example are reserved function names and print the current date and time in
the format typical for the country setting. However, because JScript is case-sensitive, [Date] and [Time] are
references to the field names Date and Time (if defined as such).

Thecommand Esc i thus returns thecharacter strings in theexampleasanansweroneafter theother:

00001<CR>
00002<CR>
00003<CR>
00004<CR>
. . .
00012<CR>

But only after the corresponding label has been printed completely.

7.5 Start signal (Esc g)

If a printout is not to be made immediately for all desired copies, but for one copy at a time by activating a
start contact, the command Esc g can also be used instead of the contact at the I/O interface (to be sent in
hexadecimal form as two bytes 1B 6716, without terminating line end character).

The command Esc g corresponds to exactly one single triggering of the START contact at the I/O interface.
Thus, a printer can be controlled exclusively via a TCP/IP connection without having to use the I/O interface
too.

But also a remote control of an EOS2 or EOS5 printer, which both do not have an I/O interface (in contrast to the
SQUIX), will react to the Esc g command.

7.6 Trigger the I/O interface (Esc xin)

The possibilities to control a cab printer via TCP/IP connection (and without direct wiring of the I/O interface)
are even more versatile. To control the I/O interface on the TCP/IP network there is the command Esc xin. The
commandmust be followed by the name of the signal/connection, finished with a semicolon. An end of line is
not necessary.

The commands are interpreted as triggers. It is therefore not possible to set the printer to pause state. For this
purpose, the separate commands Esc p1 and Esc p0must be used.

m m
J
S l1; 0, 0, 68, 71, 100
H 150, -2
O R, S
T:ETINUM; 5, 6, 0, 3, 3;[SER:00001][I][WINF]
T 5, 15, 0, 3, 3;Label [ETINUM] printed on [DATE] at [TIME].
A 12

70 7 The most common Escape commands

Since these are escape commands, they can be sent, for example, by a PLC to port 9100 of the printer, while the
print data itself is sent to the printer via a PC or data server.

The commands are as follows:

Table 7.1: Trigger I/O signals Esc xin

command result

Esc xin FSTLBL; Corresponds to the signal input Print first label of the I/O interface. Only
required if Apply/Print mode is selected on a printer with an applicator.

Esc xin START; Starts printing a (further) copy.
Esc xin STOP; Stops printing16

Esc xin REPRINT; Repeats printing the last label.
Esc xin RSTERR; Confirms an error message if the printer is blocked by an error.
Esc xin LBLREM; If the printer is in dispensingmodebutwithout a cab applicator, the signal

Label removedmust be used to give the printer permission to print the
next copy of the print job.

Esc xin JOBDEL; Deletes the currently pending print job. The printer returns to the ready
state.

7.7 Reading the I/O interface (Esc xout)

The I/O interface can not only be triggered by an escape command, it is also possible to read the digital outputs
of the printer. To do this, send the command Esc xout to the printer. Because it is an escape command, no line
end is required.

The printer responds with a sequence of the letters N for No or Y for Yes. The letters are terminated by a carriage
return character (decimal 13, hexadecimal 0D16). They stand in order for:

1. READY (Pin 10)
2. JOBRDY (Pin 9)
3. FEEDON (Pin 4)
4. ERROR (Pin 22)

5. RIBWARN (Pin 15)
6. PEELPOS (Pin 21)
7. HOMEPOS (Pin 5)
8. ENDPOS (Pin 3)

9. LBLWARN (Pin 2)
10. RIBERR (Pin 7)
11. MEDERR (Pin 8)

7.8 Outlook: Printer control in the industry 4.0 age with OPC UA

Today’s machine communication is network-based, devices communicate with each other via TCP/IP based
services and protocols. JScript and the escape commands are still designed for direct communication with-
out complex protocols. In the past two decades, in which JScript exists, a lot has changed, especially in the
last few years. The current cab printers (except Mach1 and Mach2) are using the OPC UA protocol. It is pos-
sible to replace all escape queries with the advantages of a modern protocol. Therefore OPC UA provides
a mature security concept which allows to send commands encrypted only from authorized devices to the
printers.

16The STOP signal interrupts each operation immediately and puts the printer into an error state (an EOS or SQUIX display shows External
Error). A print command sent in the error state will not be executed and the printer will remain quiet. In contrast to pressing an
emergency stop button, the error can be acknowledged and the printer can be used again by pressing Esc xin RSTERR;.

7 The most common Escape commands 71

If you want to knowmore about OPC UA, please have a look at the cab web page. There you will also find special
instructions how to integrate a cab printer into your production process control or IT infrastructure using the
OPC UA protocol.

https://www.cab.de/opcua

72 8 Access to databases

8 Access to databases

The access to databases can be done from a cab printer via JScript and SQL interface. The printer connects to a
Windows service, the cab Database Connector. The connection is made via the database language SQL, in a
language range reduced to this application.

For JScript itself the actual database remains invisible. The printer always speaks only with the Database
Connector. Whether this interacts with a MySQL database server or a simple Excel file is not visible to the
printer.

Besides accessing a database via the cab Database Connector the printer can also access a local file (stored on
the printer) and act as database server itself. This is possible for the A, A+ and Hermes+ devices with a dBASE file
and for all newer printers based on the SQUIX with a SQLite file besides dBASE.

This requires either a suitable dBASE or SQLite file in the subdirectorymisc/, or aWindows PC that can be reached
from the printer via an IP address and has access to the database. If the cab Database Connector is used, one
service for any number of printers is sufficient.

The database is accessed from the cab Database Connector via the ODBC or OLEDB17 interface. Therefore any
database can be used which has a suitable ODBC or OLEDB interface. The cab Database Connector in turn uses
a port to accept TCP connections to talk to the printers (usually port 1001).

8.1 Connecting to the cab Windows service

We need to know the IP address of the machine running cab Database Connector. Then we need the port on
which the service listens and receives the SQL requests. In JScript we then use the following command line to
connect to the database (routed through the service).

E SQL;192.168.10.34:1001

From now on, the printer sends all database queries to the IP address 192.168.10.34 on port 1001 (of course you
will have to enter your address values here if you want to try the examples). There the cab Database Connector
should be installed and running. How to install the cab Database Connector can be read in the programming
manual (Chapter 7: cab Database Connector).

The software cab Database Connector and also the programming manual can be downloaded from the cab
website.

https://www.cab.de/en/programming

8.2 Stand alone sulution: using a local SQLite file

In addition to a connection to the Database Connector, a standalone solution can also be implemented. For
this purpose a database file compatible with SQLite 3 has to be created and copied into the directorymisc/. The
printer then works with this SQLite file (possible since firmware 5.25).

We only have to tell the printer the file using the E command:

E SQLITE;filename

17OLEDB is no longer maintained by Microsoft and should not be used anymore. Windows, ODBC and OLEDB are registered trademarks
of Microsoft Corporation.

https://docs.microsoft.com/de-de/sql/odbc/microsoft-open-database-connectivity-odbc?view=sql-server-2017
https://www.cab.de/en/programming

8 Access to databases 73

If you omit the file extension, .sqlite3 is assumed. However, .db or .db3 are also possible, in which case the
extension must also be specified.

Theexample12.2Print vouchersonpage93 shows theuseof aSQLite file stored locally on theprinter.

�Engaging the database connection (to a server or a local file) with the E commandmust always be done
after the J command, otherwise an error message will appear on the printer.

8.3 Get a value from a database

For the query to a database there is the special function [SQL:…]. If it is used in a text or barcode content, the
response of the database is used as return value.

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 200
5 E SQL;192.168.10.34:1001
6 T:ARTNR; 10, 5, 0, 3, 5;[?:Article number?,5560432,1,R,D]
7 T 10, 15, 0, 3, 5;[SQL:SELECT PRODNAME FROM TA WHERE ARTICLE='{ARTNR}']
8 A 1

Listing 8.1: Get a string from a database

Within the special function, curly brackets can be used to insert the content of another JScript element (text
or barcode), so to speak a reference within an SQL call. In this example, the user is first asked for an article
number (line 6). Then this input is used in the following line. The cab Database Connector then receives this
request:

SELECT PRODNAME FROM TA WHERE ARTICLE='5560432'

Assuming that the user has accepted the default by simply confirming.

8.4 Splitting the database response

The response is a single string, regardless of whether the database server returns one or more responses. If the
response consists of multiple elements (strings), they are arranged one after the other and separated with a GS
ASCII character (Group Separator, decimal 29, hexadecimal 1D16).

The special function [SPLIT:name,pos] is available for processing in JScript. It can be used to refer to a content
of a single JScript line and pos is used to specify the position within the content defined by the GS character
separated string response from the database.

The position is counted from 1. If the referenced content contains no GS character, so if it consists of only one
element, then [SPLIT:name,1] returns the same result as [name].

A more extensive example shows listing 8.2.

m m
J
S l1; 0, 0, 68, 71, 100
H 200
E SQL;192.168.10.34:1001
T:ARTNR; 10, 5, 0, 3, 5;[?:Article number?,5560432,1,R,D]
T 10, 15, 0, 3, 5;[SQL:SELECT PRODNAME FROM TA WHERE ARTICLE='{ARTNR}']
A 1

https://en.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

74 8 Access to databases

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 0
5 O R
6

7 ; definition of the IP and port address where the cab service is installed
8 E SQL;192.168.10.34:1001
9

10 ; user entry via touchscreen
11 T:INPUT; 0, 0, 0, 3, 3;[?:Artikelnr.:, , , L7, R, D][I]
12

13 ; Database Connector query (SQL Statement)
14 ; (query the database about all fields of the table 'article'
15 ; where 'artnr' was equal to the JScript variable 'INPUT')
16 T:RESULT; 0, 0, 0, 3, 3;[SQL:SELECT * FROM article WHERE artnr='{INPUT}'][I]
17

18 ; split the result from the database into
19 ; multiple text elements onto the label
20 T:RES1; 30, 5, 0, 5, pt11;[SPLIT:RESULT, 1][I]
21 T:RES2; 30, 10, 0, 5, pt11;[SPLIT:RESULT, 2]
22 T:RES3; 30, 15, 0, 5, pt11;[SPLIT:RESULT, 3]
23 T:RES4; 30, 20, 0, 5, pt11;[SPLIT:RESULT, 4]
24 T:RES5; 30, 25, 0, 5, pt11;[SPLIT:RESULT, 5]
25 B 12, 30, 0, 2OF5INTERLEAVED, 25, 1, 15;[RES2]
26

27 ; fixed text elements on the label:
28 T 0, 10, 0, 5, pt11;[J:r26]Artikelnr.:
29 T 0, 15, 0, 5, pt11;[J:r26]Beschreibung:
30 T 0, 20, 0, 5, pt11;[J:r26]Beschreibung:
31 T 0, 25, 0, 5, pt11;[J:r26]Einheit:
32

33 ; Add an entry into the log table containing
34 ; date, time and article number
35 T:DAT; 0, 0, 0, 3, 3;[DATE][I]
36 T:TIM; 0, 0, 0, 3, 3;[TIME][I]
37 T 0, 0, 0, 3, 3;[SQL:INSERT INTO log VALUES ('{DAT}','{TIM}','{RES2}')][I]
38

39 ; query how many labels the user wants to print
40 A [?]

Listing 8.2: Splitting a database response

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0
O R

; definition of the IP and port address where the cab service is installed
E SQL;192.168.10.34:1001

; user entry via touchscreen
T:INPUT; 0, 0, 0, 3, 3;[?:Artikelnr.:, , , L7, R, D][I]

; Database Connector query (SQL Statement)
; (query the database about all fields of the table 'article'
; where 'artnr' was equal to the JScript variable 'INPUT')
T:RESULT; 0, 0, 0, 3, 3;[SQL:SELECT * FROM article WHERE artnr='{INPUT}'][I]

; split the result from the database into
; multiple text elements onto the label
T:RES1; 30, 5, 0, 5, pt11;[SPLIT:RESULT, 1][I]
T:RES2; 30, 10, 0, 5, pt11;[SPLIT:RESULT, 2]
T:RES3; 30, 15, 0, 5, pt11;[SPLIT:RESULT, 3]
T:RES4; 30, 20, 0, 5, pt11;[SPLIT:RESULT, 4]
T:RES5; 30, 25, 0, 5, pt11;[SPLIT:RESULT, 5]
B 12, 30, 0, 2OF5INTERLEAVED, 25, 1, 15;[RES2]

; fixed text elements on the label:
T 0, 10, 0, 5, pt11;[J:r26]Artikelnr.:
T 0, 15, 0, 5, pt11;[J:r26]Beschreibung:
T 0, 20, 0, 5, pt11;[J:r26]Beschreibung:
T 0, 25, 0, 5, pt11;[J:r26]Einheit:

; Add an entry into the log table containing
; date, time and article number
T:DAT; 0, 0, 0, 3, 3;[DATE][I]
T:TIM; 0, 0, 0, 3, 3;[TIME][I]
T 0, 0, 0, 3, 3;[SQL:INSERT INTO log VALUES ('{DAT}','{TIM}','{RES2}')][I]

; query how many labels the user wants to print
A [?]

8 Access to databases 75

8.5 Write back to a database

Since the database language SQL does not only know queries, the special function [SQL:…] can also be
used to write back to a database. The previous example shows this in line 37, where with the INSERT INTO
command three values can be inserted into a table. The line itself is implemented in JScript as invisible
text.

Besides the SQL special function, there is also the SQLLOG special function. It is only executedwhen the respective
label has been completely processed (printed and if necessary dispensed). The procedure works in analogy to
theWINF write command into the info memory. In the previous example (listing 8.2), line 37 could also look like
this to create the database entry only at the time of printing.

37 T 0, 0, 0, 3, 3;[SQLLOG:INSERT INTO log VALUES ('{DAT}','{TIM}','{RES2}')][I]

Listing 8.3: If SQLLOG is used to write to a database, the write operation is only performed after complete printing and dispensing
(similar to WINF).

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0
O R

; definition of the IP and port address where the cab service is installed
E SQL;192.168.10.34:1001

; user entry via touchscreen
T:INPUT; 0, 0, 0, 3, 3;[?:Artikelnr.:, , , L7, R, D][I]

; Database Connector query (SQL Statement)
; (query the database about all fields of the table 'article'
; where 'artnr' was equal to the JScript variable 'INPUT')
T:RESULT; 0, 0, 0, 3, 3;[SQL:SELECT * FROM article WHERE artnr='{INPUT}'][I]

; split the result from the database into
; multiple text elements onto the label
T:RES1; 30, 5, 0, 5, pt11;[SPLIT:RESULT, 1][I]
T:RES2; 30, 10, 0, 5, pt11;[SPLIT:RESULT, 2]
T:RES3; 30, 15, 0, 5, pt11;[SPLIT:RESULT, 3]
T:RES4; 30, 20, 0, 5, pt11;[SPLIT:RESULT, 4]
T:RES5; 30, 25, 0, 5, pt11;[SPLIT:RESULT, 5]
B 12, 30, 0, 2OF5INTERLEAVED, 25, 1, 15;[RES2]

; fixed text elements on the label:
T 0, 10, 0, 5, pt11;[J:r26]Artikelnr.:
T 0, 15, 0, 5, pt11;[J:r26]Beschreibung:
T 0, 20, 0, 5, pt11;[J:r26]Beschreibung:
T 0, 25, 0, 5, pt11;[J:r26]Einheit:

; Add an entry into the log table containing
; date, time and article number
T:DAT; 0, 0, 0, 3, 3;[DATE][I]
T:TIM; 0, 0, 0, 3, 3;[TIME][I]
T 0, 0, 0, 3, 3;[SQLLOG:INSERT INTO log VALUES ('{DAT}','{TIM}','{RES2}')][I]

; query how many labels the user wants to print
A [?]

76 9 More than just printing

9 More than just printing

The cab printers allow via options (additional hardware mounted in front of the printer) different operation
modes like cutting, dispensing or printing and rewinding. For these options there are capital letters in JScript to
configure the respective option.

� The commands to use (hardware) optionsmust follow the command S (label size), otherwise an error
message will appear on the printer.

9.1 Dispensing labels

To dispense a label you need two things. There must be a dispensing edge, combined either with a dispensing
photoelectric sensor, an I/O interface or a label applicator. In addition, a label must be pushed forward after
printing so that it can be removed by the user (or label applicator).

Thedispensingmode is setwith the commandP in JScript. The commandcanbeassignedanoptional parameter,
the dispensing offset, i.e. the distance inmillimeters or inches bywhich the label ismoved beyond the dispensing
position. Positive and negative values are possible. If the values are positive, the label strip is transported further
out of the printer. The default value 0.0 mm positions the rear edge of the label on the dispensing edge. Typical
for the dispensing offset would be half the label distance (half the length of the gap).

P 1.5

In this example the dispensing distance is set to 1.5 mm and the dispensing mode is activated. After reaching
the dispensing position, the labels are pushed forward by +1.5 mm. Afterwards the printing of the next label is
waited until the removal of the label is confirmed.

9.2 Tear-off mode

When dispensing, the label is only moved forward in combination with a dispensing light barrier. Without such a
light barrier there is a similar option, the tear-off mode. This mode is activated by the T parameter of the option
command (Tear-Off Mode).

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5 O R, T2.5
6 T 12, 25, 0, 3, 6;Hallo Welt
7 A 1

Listing 9.1:With the T option, the printer switches to tear-off mode

The fifth line (O R,T2.5) activates the tear-offmode in addition to the 180° rotation.

The specification of how far beyond the tear-off position must be shifted can be defined directly after the letter
“T” as an option argument. It is added to the parameter defined directly in the printer. Therefore, the value 0
should always be aimed for in the printer and only a slightly different value should be set in the printer menu to
compensate for differences between several printers. If both values are set to 0.0 mm, the position is approached
in such a way that the original accessory (toothed tear-off edge) matching the respective printer is positioned at
the rear edge of the label.

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0
O R, T2.5
T 12, 25, 0, 3, 6;Hallo Welt
A 1

9 More than just printing 77

The transport to the tear-off edge always takes place after the last label. When further labels are printed again,
a retraction is first triggered and the front edge of the next label is positioned under the printing bar again.
Then all new labels to be printed are printed without interruption and moved forward to the tear-off posi-
tion.

9.3 Automatic retraction

If a label has been dispensed, the beginning of the next label is no longer under the print head, but has already
passed it. To print the next label completely, the printer must retract the label. To do this, the counterpressure
roller is turned backwards until the start of the next label is under the print head.

However, this does not necessarily have to be done in this way. The printer can also start printing the next
label and print exactly until the dispensing position is reached. If the previous label is removed, the interrupted
label is printed to the end. This usually results in a hair-thin white (unprinted) cross line on the label due to
slippage.

If this is to be prevented, set the Back Transport parameter in the printer menu from optimized to always. In
JScript, the option command parameter D can be used.

O R, D

This line would also force a permanent retraction (including a 180° rotation). If you want to force an optimized
retraction instead, use the P parameter in the Options command.

Note that firmware 5.35 (published October, 27th 2020) comes with a new method of optimised printing to
eliminate the hair-thin white cross line. So instead of turning off the optimisation, updating the firmware may be
a better solution for you.

9.4 Ribbonsaver

If you have a printer with automatic saving, you can enable or disable the use of this option. To do this,
the additional argument R1 or R0 is appended to the H command. The argument R1 (“ribbon saver on”)
enables the use of automatic saving. The following line, however, would disable the automatic saver (if in-
stalled):

H 150, 0, R0

Where the first value sets the print speed to 150 mm/s, the second value adds a heat of 0 to the printer’s internal
value and the R0 disables the saving function, if the function is not forced in the printer menu. In the settings in
the printer you have the possibility to choose between “JScript” and “on”. If you have chosen “on”, a parameter
R0 cannot prevent the automatic saving activity. The printer setting has (exceptionally) priority over the JScript
code here.

9.5 Cutting Labels

You can also use a cutter to cut off a label. The command is C followed by a letter that specifies the cut type or a
number. The following commands are possible:

78 9 More than just printing

Table 9.1: The cut command C with its options

Command Option

C Integer Cut after defined among of labels
C e Cut after the job’s last label
C s Cut at the job’s start
C s,Number Cut at job start after number units
C p Perforation cut instead of cutting through, after each label
C p,Zahl Perforation cut after number units of measurement
C sp Start the job with a perforation cut

The position of the cut at the end of the label and an additional cut position can be selected as optional
parameters. Only positive values are allowed for the further cutting position.

The additional value parameters to get an offset of the cut cannot be mixed. Therefore, you cannot mix an offset
perforation with a cut through.

Probably the most common application is perforating on a shrink tube with final cutting at the end of the
job.

m m
J

; here are the elements like label size, options, texts, barcodes, etc.
...

C p
C e
A 5

Listing 9.2: Using the cutting command in a label made for shrink tubes. You will get a perforation cut between the single labels and a
fully cut through after the last label.

The example in listing 9.2 would create five markings (labels) on the heat shrink tube and then cut the tube. The
markings are separated from each other by a perforation.

� The use of a perforation knife allows both perforating and cutting, but is limited in the maximum cut
width depending on the material to be cut. Talk to us in advance if you want to perforate very large
materials.

9.6 Using an Applicator

An applicator can be attached to an A, A+, SQUIX, Hermes A, Hermes+ or HERMES Q. The printer offers additional
parameters in the settings menu when an applicator is detected.18

18Printer and applicator communicate via the Sub-D connector on the front of the printer. The printer is able to recognize that an
applicator is attached, but it cannot recognize which one it is.

9 More than just printing 79

9.6.1 Set parameters for an applicator

Parameters can be passed to the applicator with the JScript print data. This is done with the option command O
Ax=y.

With the O command, several options can be spread over several command lines, or all options can be defined
on a single command line and separated by a comma.

Table 9.2: Set parameters for an applicator

Command Parameter [ms]

O A0=n Start support air nmilliseconds delayed
O A1=n Stop support air nmilliseconds delayed
O A2=n Set print delay to nmilliseconds
O A3=n Set blocking time (suppress new start signals) to nmilliseconds
O A4=n Set blowing time (support air duration) to nmilliseconds

9.6.2 Print and apply or apply and print?

In the printer settings, the mode can be selected between Print and Apply (default value) and Apply and
Print.

Normally a label is printed and applied directly if the A command was given. If an applicator is connected to e.g.
the Hermes A or Hermes+, the digital input START must be triggered to start printing (apply +24 V between pin 13
and pin 25 at the I/O interface).

In Apply and Print mode, however, the applicator is “hold” in the waiting position and applies the held la-
bel while triggering the START signal. After the label is applied, a new label is automatically printed and
brought into the waiting position. This procedure allows a faster response to the signal from a production
process.

However, after loading a job, no label is yet in the waiting position, so the START signal does not trigger any
action. It is mandatory to send the FSTLBL signal to the printer first (connect +24 V between pin 1 and pin 25 at
the I/O interface).

The I/O interface cannot only bewired directlywith 24 V voltage, it is also possible to control it via TCP/IP networks.
Send as START signal the escape command Esc g (hexadecimal 1B6716). In Apply and Printmode, youmust send
the command Esc xin FSTLBL;once (hexadecimal 1B78696E204653544C424C3B16).

80 10 Diagnostic options

10 Diagnostic options

The SQUIX offers several ways to log the data stream sent to the printer. On the one hand there is the possibility
to print the received data directly in plain text. This possibility exists since a very long time, old devices from the
A-series already master this.

This method is calledMonitor Mode. It reaches its limits when interaction with the printer is required. InMonitor
Mode, the printer does not process the incoming data stream, but only produces a printout. The width can be
set in 5 mm steps from 50 mm to the maximum print width. The printer prints line by line and ignores the label
detection. As with all diagnostic functions that do not take the label dimensions into account during printing,
you can also turn the material around in monitor mode and print on the back of the carrier strip if no suitable
continuous material is available.

A new feature of the SQUIX series is the possibility to write the data to a file, which can later be loaded from the
printer via FTP or FTPS (FTP with TLS) connection or you can have the printer write directly to an SD card or USB
memory.

10.1 Monitor Mode

Monitor mode can be turned on at the printer in the Diagnosticsmenu. If it is active, this is indicated in the printer
display (Figure 10.1). Press the Cancel key to exit the monitor mode.

Figure 10.1:Monitor Mode was activated

10.2 Log incoming data into a file

But it is also possible to write a file directly.

To do this, press the Record Data Stream item in the Diagnostic Menu.

The figure 10.2 shows three screenshots of the SQUIX. In the Diagnostics menu you can start the recording by
pressing Record Data Stream. A dialog follows in which you can specify name and location. By default, a file
name is generated from the current date and time.

10 Diagnostic options 81

Figure 10.2: A SQUIX printer allows to record all incoming data into a file direcly on an USB storage device

The file name is displayed to indicate that recording is in progress. Pressing the button again will stop the
recording (with a query if you really want to stop).

While recording, the status bar on the main screen shows a circle with a dot flashing in the middle (similar to an
audio or video recorder).

The recorded file contains thepure inputdata streamwithout anyadditions (like timestamps).

A missing line end after an A command can be quickly exposed both with the monitor mode and via data stream
recording.

10.3 Preview a label without printing

With the following command you can force the printer to create an internal bitmap of the label, but inhibit to
print it.

A [PREVIEW]

Toshowthebitmapof the lastprinted label (or forcedpreview), use this link in yourbrowser:

https://192.168.10.1/cgi-bin/bitmap

If a user name and password are requested, use admin as the user name and the website password specified in
the Securitymenu. The initial factory default for the password isadmin. Use the IP address of your printer as the IP
address. Startingwith the SQUIXmodel series, you have the choice to force incoming connections viaHTTP (unen-
crypted) or HTTPS (encrypted). Older printers can only communicate unencrypted.

https://192.168.10.1/cgi-bin/bitmap

82 11 Barcodes in global trade

11 Barcodes in global trade

In global trade, a number of barcode types have quickly established themselves which clearly classify goods. For
example, the EAN-13 code, the European Article Number. It consists of 13 digits, 12 of which identify the article
and the last digit acts as a check digit.

In addition to this code, there are similar codes like the ISBN for books and magazines. There is also a check
digit, the value that can be uniquely calculated from the previous digits.

11.1 Data integraty for barcodes

Barcodes in general are a symbolic representation of content (numbers, character strings, etc.), which can be
captured particularly well by machine. E.g. with bar code readers based on a laser beam for one-dimensional
codes or sufficiently high-resolution cameras for two-dimensional codes.

When reading by machine, errors are to be ruled out as far as possible. Twomethods are used for this purpose.
On the one hand, the correctness of data can be checked using check digits. Depending on the method used to
calculate these check digits, errors can be detected almost 100 %. However, the error detection can only confirm
a read data set. If the calculated and read check digits do not match, the actual content cannot be restored. One
can only discard the reading that was recognized as incorrect.

Therefore, there is not only the error detection but also the error correction. Because the correction data is
already integrated during the compilation without knowing whether the reader has to restore the data later
or not, this procedure is also called FEC, which means forward error correction. This means that more data is
displayed in the barcode than actually needs to be transported. Later you can read the data, perform a check,
and if the check is successful, you can process the data directly as checked values.

If the data cannot be verified as correct, an error correction procedure offers the possibility to restore the original
content of the data. Depending on the method, this is possible to a considerable extent, but requires increased
computing power.

11.1.1 Error detection by a check digit shown on the GTIN

There are some data that already have a built-in authenticity check. For example, a check digit is built into the
GTIN, the Global Trade Item Number. The complete GTIN number contains an additional digit that does not
contribute to the content and could actually be omitted. However, it provides confirmation that this sequence of
digits follows a certain rule and can therefore be considered correct.

The GTIN-13 has 12 payload digits followed by a check digit. The first 12 digits clearly identify a product. For exam-
ple, at a supermarket checkout, the price and product name can be determined with the help of a database after
the checkout system has read the GTIN from a printed barcode by a laser scanner.

You could simply add up the sum of the single digits and calculate the difference to the next multiple of 10 (as a
result, we only want to get a single digit, so the code standardized by GS1 uses this difference). The result would
then be the check digit.

So if youhad to formtheGTIN for the sequenceofdigits 123456789012, youwoulddo thecalculation:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 + 1 + 2 = 48

50 – 48 = 2

11 Barcodes in global trade 83

The check digit would thus be 2 and the total GTIN would be 1234567890122.

Why so complicated? Why not just use the last digit of the sum of all useful digits as check digit? The answer lies
hidden in practical application. If we calculate the check digit as the difference to the next multiple of 10, then
the sum of all digits including the check digit is always amultiple of 10. This makes it much easier for the scanner
at the supermarket checkout to check whether the reading is valid. Howmuch work we put into creating the
label is not important, the process at the checkout must be fast.

In our example, the scanner calculates like this:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 + 1 + 2 + 2 = 50

50 = 5 · 10 + 0 7→ good read

If you now take any digit and replace it by another digit, e.g. the fifth digit by a 7, the reading result 1234767890122
wouldnotbeconformto the rules anymore. Because the sumofall digits now results in 52.

But it is a little more complicated. If the barcode cannot be read by the scanner, a human would have to
read the GTIN from a plain text imprint and enter it on a keyboard. This can lead to an interchanging of two
neighboured digits, which happens more often with a manual input than typing a wrong digit. However, the
GTIN 1235467890122would be valid according to the rule we have set up.

Therefore, starting from the back (with the check digit), each digit is multiplied alternately by 1 and by 3
before the sum is formed. This summust be amultiple of 10.

TheGTINcheckdigit for theuseful digits 123456789012 is actually calculated in thisway:

1 + 3 + 5 + 7 + 9 + 1 = 26

2 + 4 + 6 + 8 + 0 + 2 = 22

26 + 3 · 22 = 26 + 66 = 92

100 – 92 = 8

A final checkwill result in this (wemultiply eachdigit alternativelywith1and3, starting fromthe lastdigit):

8 · 1 + 2 · 3 + 1 · 1 + 0 · 3 + 9 · 1 + 8 · 3 + 7 · 1 + 6 · 3 + 5 · 1 + 4 · 3 + 3 · 1 + 2 · 3 + 1 · 1 = 100 7→ good read

TheactualGTIN is 1234567890128. 1235467890128wouldno longer conformto the rules.

8 · 1 + 2 · 3 + 1 · 1 + 0 · 3 + 9 · 1 + 8 · 3 + 7 · 1 + 6 · 3 + 4 · 1 + 5 · 3 + 3 · 1 + 2 · 3 + 1 · 1 = 102 7→ bad read

There are other check digits within the data defined by the GS1 organization. For example, certain GTINs
contain a weight specification in addition to the identification of the goods. This allows you to offer goods
in bulk and to charge them by weight at the supermarket checkout. The procedures for these additional
check digits are muchmore complex and are defined in the GS1 organization’s manual GS1 General Specifica-
tions.

https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications

84 11 Barcodes in global trade

Figure 11.1: Both, the printer and the cabLabel S3 software are calculating the check digit. If the digit the user entered is wrong, the
software will replace it automatically by the correct digit.

11.1.2 Error correction in QR and Datamatrix codes with the Reed-Solomon method

The twomathematicians Irving Stoy Reed and Gustave Solomon from the MIT Lincoln Laboratory, a research
facility of the United States Department of Defense, developed a data structure in the 1960s that allows data to
be reliably identified as faulty and even clearly reproduced again in the event of the loss of individual parts of the
data or corruption (e.g. the mixing up of digits).

The Reed-Solomon code is used by the Datamatrix in the form ECC200 and allows to correct up to 25 % of
destroyed or unreadable parts. ECC200means error correction code and describes the procedure and the amount
of redundant information in the code. There exist a couple of different levels of error correction in Datamatrix.
But today’s Datamatrix always uses the ECC200 correction code. This does not have to be specified in the JScript,
the older procedures ECC00 to ECC140 are not supported.

The situation is different with the QR Code. The company Denso Wave, which invented the code in 1994 and
released it for public use, defines different levels of redundancy. In JScript, for example, you have the possibility
to append the options +ELx to the type identifier QR-Code, where the x indicates the level of redundancy (Error
Correction Level).

In the 4.7 listing on page 38 the error correction level was not specified. The printer has chosen level 1 by itself.
You can recognize this by the fact that bothbits are set in the format definition. Thisway the code takes up the least
space. If ahigher level is tobeprinted, the correspondingbarcodeoptionmustbeused.

11 Barcodes in global trade 85

Table 11.1: Error Correction Levels of a QR Code

Code type including option Alternative spelling Result

QR-CODE+ELL QR-CODE+EL1 Level 1, able to reproduce 7 % of the original code.
QR-CODE+ELM QR-CODE+EL2 Level 2, able to reproduce 15 % of the original code.
QR-CODE+ELQ QR-CODE+EL3 Level 3, able to reproduce 25 % of the original code.
QR-CODE+ELH QR-CODE+EL4 Level 4, able to reproduce 30 % of the original code.

Figure 11.2: Basic structure of a QR code with error level andmask pattern. Besides the three large search patterns, which are connected
to the two lines for timing, and the other smaller one, the code also contains the format information in addition to the user
data and the correction parameters (source: Wikipedia).

11.2 GS1 Data Structure

The GS1 is a global organization that defines a special data structure and associated barcodes. The data itself is
divided into so-called Application Identifier, also called AI. These AI are basically numbers that have the same
meaning worldwide. The following table 11.2 lists some of these AI.

https://en.wikipedia.org/wiki/QR_code

86 11 Barcodes in global trade

Table 11.2: AI starting with 0, 1 or 2 of the GS1 data structure

AI Description Format

00 Serial Shipping Container Code (SSCC) N2+N18
01 Global Trade Item Number (GTIN) N2+N14
02 GTIN of contained trade items N2+N14
10 Batch or lot number N2+X..20
11 Production date (YYMMDD) N2+N6
12 Due date (YYMMDD) N2+N6
13 Packaging date (YYMMDD) N2+N6
15 Best before date (YYMMDD) N2+N6
16 Sell by date (YYMMDD) N2+N6
17 Expiration date (YYMMDD) N2+N6
20 Internal product variant N2+N2
21 Serial number N2+X..20
22 Consumer product variant N2+X..20
235 Third Party Controlled, Serialised Extension of GTIN (TPX) N3+X..28
240 Additional product identification assigned by the manufacturer N3+X..30
241 Customer part number N3+X..30
242 Made-to-Order variation number N3+N..6
243 Packaging component number N3+X..20
250 Secondary serial number N3+X..30
251 Reference to source entity N3+X..30
253 Global Document Type Identifier (GDTI) N3+N13+X..17
254 GLN extension component N3+X..20
255 Global Coupon Number (GCN) N3+N13+N..12

All AI can be found on the Website of the GS1. The format describes the required digits or characters. N2 means
that you need exactly two digits. X..20 refers to a string of letters and/or numbers, which may have a maximum
length of 20 characters. With N2+X..20 as defined for the serial number, for example, you can include up to 20
letters or digits in this information. The data set then consists of up to 23 characters. If a data record is flexible in
length (and is not the last data record in a listing), it must be followed by a special character (usually an FNC1). A
FNC1 special character is always followed by an AI.

Barcodes like the GS1-128 consist of several AI, which are listed one after the other in the barcode. If a human-
readable plain text line is added to a code, the AI is placed in round brackets to increase readability. How-
ever, the code itself does not contain brackets. It consists only of the completely formed sequence of AI
and their respective contents, in case of a flexible length it ends with a special character before a following
AI.

If a GS1 barcode is defined in JScript, the data is also specified with the brackets, even if it is not contained in the
actual code. See 11.1 for an example of a GS1-style shipping label.

11.2.1 Floating numbers as a content of an AI

There are AI, which have a decimal number as content, e.g. the AI 310x. The meaning of this AI is to indicate
the net weight in the unit kilogram. The AI is formed in the form N4+N6, i.e. 4 digits are used for the AI itself
and then always 6 digits for the value. The last digit of the AI always indicates the number of decimal
digits.

https://www.gs1.org/standards/barcodes/application-identifiers

11 Barcodes in global trade 87

Figure 11.3: A GS1 conform shipping label

88 11 Barcodes in global trade

If youwant todisplay five kilogramsnetweight inaGS1barcode, youcanuse the following line in JScript.

B 10, 30, 0, GS1-128, 20, 0.33;(3100)000005

Here the last digit of the AI is 0, so the coded value has no decimal digits. If you want to specify the value in
grams, you could use the following line. Then 5 kg = 5000 g.

B 10, 30, 0, GS1-128, 20, 0.33;(3103)005000

Grams and kilograms are frequently used, but all specifications of the number of decimal digits up to the value
of 5 are still acceptable. In our example, it would therefore also be possible to form the AI including data as
follows:

(3100)000005 = (3101)000050 = (3102)0000500 = (3103)005000 = (3104)050000 = (3105)500000

Figure 11.4: In cabLabel S3 Pro you get assistance by a software tool. In this dialog window you will have to enter the number of digits of
some AIs in a seperate field.

11 Barcodes in global trade 89

1 m m
2 J
3 S l1; 0, 0, 150, 153, 100
4 H 150, 0
5

6 ; create the variable fields
7 T:GTIN; 0, 0, 0, 3, 3;04012345333336[I]
8 T:SSCC; 0, 0, 0, 3, 3;376170137518461130[I]
9 T:PDATE; 0, 0, 0, 3, 3;[YY][MONTH02][DAY02][I]

10 T:Charge; 0, 0, 0, 3, 3;123456[I]
11

12 ; draw a rectangle and some lines onto the label
13 G 2, 2, 0;R:96, 146, 0.5, 0.5
14 G 2, 22, 0;L:96, 0.5
15 G 2, 42, 0;L:96, 0.5
16 G 2, 62, 0;L:96, 0.5
17 G 2, 82, 0;L:96, 0.5
18

19 ; sender address
20 T 4, 5, 0, 5, 2;Absender
21 T 4, 8, 0, 3, 3;cab Produkttechnik GMBH & Co KG
22 T 4, 12, 0, 3, 3;Wilhelm-Schickard-Str. 14
23 T 4, 16, 0, 3, 3;76131 Karlsruhe
24 T 4, 20, 0, 3, 3;GERMANY
25

26 ; receiver address
27 T 54, 5, 0, 5, 2;Empfänger
28 T:ToLine1; 54, 8, 0, 3, 3;Musterfirma AG
29 T:ToLine2; 54, 12, 0, 3, 3;Industriestraße 128b
30 T:ToLine3; 54, 16, 0, 3, 3;1234 Schöndorf am Weier
31 T:ToLine4; 54, 20, 0, 3, 3;AUSTRIA
32

33 ; NVE plain text
34 T 4, 28, 0, 5, 5;SSCC
35 T 4, 38, 0, 3, 8;[SSCC]
36

37 ; GTIN plain text
38 T 4, 48, 0, 5, 5;GTIN
39 T 4, 58, 0, 3, 8;[GTIN]
40

41 ; production date and batch no. as plain text
42 T 4, 68, 0, 5, 5;Produktionsdatum
43 T 4, 78, 0, 3, 8;[PDATE,5,2].[PDATE,3,2].20[PDATE,1,2]
44 T 54, 68, 0, 5, 5;Charge
45 T 54, 78, 0, 3, 8;[Charge]
46

47 ; barcode for the AI 01, 10 and 11
48 ; To avoid the need for an additional FNC1, the AI10 is placed at the end.
49 B 10, 88, 0, GS1-128, 26, 0.3;(01)[GTIN](11)[PDATE](10)[Charge]
50

51 ; barcode for the SSCC
52 B 10, 120, 0, GS1-128, 26, 0.5;(00)[SSCC]
53

54 A [PREVIEW]

Listing 11.1: A GS1 conform shipping label

m m
J
S l1; 0, 0, 150, 153, 100
H 150, 0

; create the variable fields
T:GTIN; 0, 0, 0, 3, 3;04012345333336[I]
T:SSCC; 0, 0, 0, 3, 3;376170137518461130[I]
T:PDATE; 0, 0, 0, 3, 3;[YY][MONTH02][DAY02][I]
T:Charge; 0, 0, 0, 3, 3;123456[I]

; draw a rectangle and some lines onto the label
G 2, 2, 0;R:96, 146, 0.5, 0.5
G 2, 22, 0;L:96, 0.5
G 2, 42, 0;L:96, 0.5
G 2, 62, 0;L:96, 0.5
G 2, 82, 0;L:96, 0.5

; sender address
T 4, 5, 0, 5, 2;Absender
T 4, 8, 0, 3, 3;cab Produkttechnik GMBH & Co KG
T 4, 12, 0, 3, 3;Wilhelm-Schickard-Str. 14
T 4, 16, 0, 3, 3;76131 Karlsruhe
T 4, 20, 0, 3, 3;GERMANY

; receiver address
T 54, 5, 0, 5, 2;Empfänger
T:ToLine1; 54, 8, 0, 3, 3;Musterfirma AG
T:ToLine2; 54, 12, 0, 3, 3;Industriestraße 128b
T:ToLine3; 54, 16, 0, 3, 3;1234 Schöndorf am Weier
T:ToLine4; 54, 20, 0, 3, 3;AUSTRIA

; NVE plain text
T 4, 28, 0, 5, 5;SSCC
T 4, 38, 0, 3, 8;[SSCC]

; GTIN plain text
T 4, 48, 0, 5, 5;GTIN
T 4, 58, 0, 3, 8;[GTIN]

; production date and batch no. as plain text
T 4, 68, 0, 5, 5;Produktionsdatum
T 4, 78, 0, 3, 8;[PDATE,5,2].[PDATE,3,2].20[PDATE,1,2]
T 54, 68, 0, 5, 5;Charge
T 54, 78, 0, 3, 8;[Charge]

; barcode for the AI 01, 10 and 11
; To avoid the need for an additional FNC1, the AI10 is placed at the end.
B 10, 88, 0, GS1-128, 26, 0.3;(01)[GTIN](11)[PDATE](10)[Charge]

; barcode for the SSCC
B 10, 120, 0, GS1-128, 26, 0.5;(00)[SSCC]

A [PREVIEW]

90 11 Barcodes in global trade

11.3 Barcode types for GS1 data

The GS1 usually does not use a new development, but uses already existing barcode types. These barcode
types are filled with data according to precisely defined rules in order to distinguish a GS1 barcode from its
original form. In most of the used codes you simply start with the special character FNC1 and let the sequence
of AI numbers and AI contents follow. If an AI has a variable length, a special character FNC1 is inserted at the
end of the user data to indicate that the AI’s data ends here and a new AI begins after the special character.
This method can be used to convert Datamatrix, QR Codes and Code-128 barcodes to GS1 compliant data
carriers.

However, the method is not a legal standard, but a non-proprietary regulation of the non-profit organization GS1.
It would not be punishable by law, but it would be unwise to use a FNC1 special character in the same way when
using a Datamatrix, QR Code or Code-128 barcode, because it can be assumed that all scanners in the world will
master the GS1 rules and identify the code as a GS1 code.

However, there are also barcode types that differ from this basic structure. So you can form the barcode types
EAN8 and EAN13. They always represent the GTIN or the shorter GTIN8. This is a separate barcode that does not
contain the special character FNC1 or the AI identifier (01) for the GTIN.

12 Best practice examples 91

12 Best practice examples

In this chapter some more complex examples will be explained, as they are more common in practice. Even
if you are not familiar with the concrete task of the respective examples, it is still worth to take a closer look
into the code, because it shows the systematic procedure for individual solutions with the cab printer language
JScript.

The examples are simplified and focus on the detail to be demonstrated. The label dimensions of 68 x 100 mm
correspond to the “training label” as it is insertedon the trainingprinters at the cab training center inKarlsruhe/Ger-
many. In practice there would be more elements like eg. logos on the labels.

12.1 Single digit month, shift identification and daily counter reset

In this example we will create a single barcode containing a searial number. The serial number is constructed
as:

1. Year of production (two digits)
2. a one digit month code (where October to December are uppercase letters O, N and D)
3. day of month (two digits)
4. a single uppercase letter as a shift code (F, S or N)
5. a five digit number starting with 00001 each new day

Listing 12.1 on page 92 will show the example.

It gets interesting from line 9 on. A special function [MONTH1] is simulated, which generates a one-digit month
code. First the string “123456789OND” is printed invisibly as AlleMonate. Then the month is determined with the
special function [MONTH] and saved as the content of AktuellerMonat.19 The value of the current month is now
used as index to the previously defined string to generate the one-character code.

The shift code looks a bit more complex. Let’s assume that the early shift starts at 6:00, the late shift takes over
at 14:00 and the night shift works from 22:00 until the next early shift starts. The shift abbreviations are defined in
line 15 (F, S and N).

Then the current time is determined in line 16. Sincewe use the options S and J (single buffer and demandbutton,
see line 7), the calculation only takes place when the trigger is pressed (symbol on the printer display or external
button). Three conditions now check if the current time is greater than the start time of the shifts. There is no
[>=:…] special function, sowe check if the time is greater thanoneminute before start.

Each check returns 1 (numeric one) or 0 (numeric zero), depending on whether the condition is true or false.
Line 20 adds all checks and adds 1 more. We have to do this because we cannot use 0 as index, but all three
conditions could be false (e.g. at 3:47 in the morning).

19Saving to a variable is equivalent to invisible printing with a field name as reference. A “variable command” does not exist in JScript,
instead, T:variable name;0,0,0,3,3;variable content[I] can be used to simulate assigning a value to a variable.

92 12 Best practice examples

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 150, 0
5

6 ; options: print on demand, single buffer, 180° rotation
7 O J, S, R
8

9 ; single digit month
10 T:AlleMonate; 0, 0, 0, 3, 3;123456789OND[I]
11 T:AktuellerMonat; 0, 0, 0, 3, 3;[MONTH][I]
12 T:MONTH1; 0, 0, 0, 3, 3;[AlleMonate,AktuellerMonat,1][I]
13

14 ; shift code (F from 6:00, S from 14:00, N from 22:00)
15 T:SchichtKuerzel; 0, 0, 0, 3, 3;NFSN[I]
16 T:AktuelleZeit; 0, 0, 0, 3, 3;[H24][MIN][I]
17 T:SC1; 0, 0, 0, 3, 3;[>:AktuelleZeit,559][I]
18 T:SC2; 0, 0, 0, 3, 3;[>:AktuelleZeit,1359][I]
19 T:SC3; 0, 0, 0, 3, 3;[>:AktuelleZeit,2159][I]
20 T:SC; 0, 0, 0, 3, 3;[+:SC1,SC2,SC3,1][I]
21 T:Schichtcode; 0, 0, 0, 3, 3;[SchichtKuerzel,SC,1][I]
22

23 ; serial number with storage in user memory and reset at the beginning of the day
24 T:Nutzerspeicher; 0, 0, 0, 3, 3;[RUSER][I]
25 T:AlteSN; 0, 0, 0, 3, 3;[Nutzerspeicher,6][I]
26 T:AlterTag; 0, 0, 0, 3, 3;[Nutzerspeicher,1,5][I]
27 T:NeuerTag; 0, 0, 0, 3, 3;[YY][DOFY][I]
28 T:Ruecksetzung; 0, 0, 0, 3, 3;[=:NeuerTag,AlterTag][I]
29 T:NeueSN; 0, 0, 0, 3, 3;[*:AlteSN,Ruecksetzung][D:5,0][C:0][I]
30 T:Seriennummer; 0, 0, 0, 3, 3;[+:NeueSN,1][D:5,0][C:0][I]
31 T:NeuerNutzerspeicher; 0, 0, 0, 3, 3;[YY][DOFY][Seriennummer][WUSER][I]
32

33 ; barcode centred on the label
34 B 0, 15, 0, CODE128, 20, 0.5;[YY][MONTH1][DAY02][Schichtcode] [Seriennummer][J:c100]
35

36 ; endless printing (on demand, see line no. 7)
37 A

Listing 12.1:With some extra work, a complex serial number can be generated, which is reset daily

m m
J
S l1; 0, 0, 68, 71, 100
H 150, 0

; options: print on demand, single buffer, 180° rotation
O J, S, R

; single digit month
T:AlleMonate; 0, 0, 0, 3, 3;123456789OND[I]
T:AktuellerMonat; 0, 0, 0, 3, 3;[MONTH][I]
T:MONTH1; 0, 0, 0, 3, 3;[AlleMonate,AktuellerMonat,1][I]

; shift code (F from 6:00, S from 14:00, N from 22:00)
T:SchichtKuerzel; 0, 0, 0, 3, 3;NFSN[I]
T:AktuelleZeit; 0, 0, 0, 3, 3;[H24][MIN][I]
T:SC1; 0, 0, 0, 3, 3;[>:AktuelleZeit,559][I]
T:SC2; 0, 0, 0, 3, 3;[>:AktuelleZeit,1359][I]
T:SC3; 0, 0, 0, 3, 3;[>:AktuelleZeit,2159][I]
T:SC; 0, 0, 0, 3, 3;[+:SC1,SC2,SC3,1][I]
T:Schichtcode; 0, 0, 0, 3, 3;[SchichtKuerzel,SC,1][I]

; serial number with storage in user memory and reset at the beginning of the day
T:Nutzerspeicher; 0, 0, 0, 3, 3;[RUSER][I]
T:AlteSN; 0, 0, 0, 3, 3;[Nutzerspeicher,6][I]
T:AlterTag; 0, 0, 0, 3, 3;[Nutzerspeicher,1,5][I]
T:NeuerTag; 0, 0, 0, 3, 3;[YY][DOFY][I]
T:Ruecksetzung; 0, 0, 0, 3, 3;[=:NeuerTag,AlterTag][I]
T:NeueSN; 0, 0, 0, 3, 3;[*:AlteSN,Ruecksetzung][D:5,0][C:0][I]
T:Seriennummer; 0, 0, 0, 3, 3;[+:NeueSN,1][D:5,0][C:0][I]
T:NeuerNutzerspeicher; 0, 0, 0, 3, 3;[YY][DOFY][Seriennummer][WUSER][I]

; barcode centred on the label
B 0, 15, 0, CODE128, 20, 0.5;[YY][MONTH1][DAY02][Schichtcode] [Seriennummer][J:c100]

; endless printing (on demand, see line no. 7)
A

12 Best practice examples 93

If the time is eg. exactly 14:00:11 (2 p.m. plus 11 seconds), then the calculation in line 16 to 21 will result in:

JScript Code Calculation Result
T:AktuelleZeit; 0, 0, 0, 3, 3;[H24][MIN][I] 1400
T:SC1; 0, 0, 0, 3, 3;[>:AktuelleZeit,559][I] 1400 > 559 1
T:SC2; 0, 0, 0, 3, 3;[>:AktuelleZeit,1359][I] 1400 > 1359 1
T:SC3; 0, 0, 0, 3, 3;[>:AktuelleZeit,2159][I] 1400 > 2159 0
T:SC; 0, 0, 0, 3, 3;[+:SC1,SC2,SC3,1][I] 1 + 1 + 0 + 1 3
T:Schichtcode; 0, 0, 0, 3, 3;[SchichtKuerzel,SC,1][I] N F S N S

The barcode should represent a unique serial number, but the counter is only five digits long. However, when
counting up ten thousand, we would have the problem that the code would have one more digit in total. This is
because the formatting [D:5.0][C:0] fills up to five digits, but does not cut off any digits if the calculated value has
six digits or more. Therefore we want to reset the counter once a day.

The counter itself is stored in user memory, but not alone. The first five digits of the user memory are made
up of the current year and the day of the year, which JScript always fills with zeros in three digits. Let’s assume
that on New Year’s Eve 2019, work was only done until 2 p.m. and 2612 products were produced. On Thursday,
January 2nd, 2020, the early shift starts production at 6.00 a.m. The user memory then contains the string
“1936502612” (2019 is not a leap year and therefore has 365 days). The comparison of “19365” with “20002”
now returns 0 (false = numerical zero). Multiply 0 by 02612 to get 0, add one and you get the new serial number
00001.

So we have to save the date in a unique form and compare it with the current day’s date. The result (1 if identical,
otherwise 0) is multiplied by the old (also stored) counter value and only then incremented by 1. However, if no
leading zeros and two decimal places isn’t wanted (standard format within JScript for calculations), you have to
format them appropriately, e.g. like here with [D:5,0][C:0].

The second label in the new year would read “2000200001” from the user memory. The comparison of “20002”
(content user memory) with “20002” (current value) now returns 1. multiplied by the old counter value and
increased by one we get formatted to five digits now “00002”.

A summaryof themost importantdate functions canbe found in theappendixonpage135.

12.2 Print vouchers

Figure 12.1: A voucher of 250 € (Listing 12.3)

Vouchers from 10 € to 500 € should be printed. The operator can enter the desired amount at the printer. Only
multiples of 10 € are allowed. A voucher is printed with a barcode consisting of a sixteen-digit random chain of

94 12 Best practice examples

letters. This information is written into a database. In order to be able to use the code later in the online store,
the content is also given in plain text, divided into four-digit segments.

Here the Advanced BASIC Compiler is used to generate the random sequence of capital letters. In JScript a check
is performed. If the desired amount is not a multiple of 10 € or if the amount is smaller than 10 € or higher than
500 €, only a “INVALID!” is printed on the label instead of the voucher.

In the lines 1 to14aBASICprogram is included. If the label is loaded frommemoryor sent to theprinter, the JScript
interpreterpasses lines 2 to13 to theAdvancedBASICcompiler andcontinues from line16.

The BASIC compiler translates the program and executes it directly. It runs in a continuous loop (REPEAT – UNTIL
lines 4 to 6). Line 3 specifies that characters can be sent directly to JScript. The actual magic of the program
is done with the commands JGET$ and JPUT. In line 5, the data stream is permanently queried from JScript.
You get an empty string if nothing is (yet) available. If the a$ assigned string differs from the empty string, it
can escape the UNTIL loop in line 6. Another loop is used to generate a random string and send it to JScript.
Afterwards the BASIC program is terminated in line 13.

Figure 12.2: 125€ are not allowed, because it’s undividable by 10 (see line 47 and 48 in listing 12.3).

12 Best practice examples 95

1 ; random generator with BASIC
2 <ABC>
3 POKE "bypass",1
4 REPEAT
5 a$ = JGET$
6 UNTIL (a$ <> "")
7

8 Zufall$=""
9 FOR i = 1 TO 16

10 Zufall$ = Zufall$ + CHR$(INT(RAN(24))+ASC("A"))
11 NEXT
12 JPUT Zufall$
13 END
14 </ABC>

Listing 12.2: A BASIC software generates a random set of characters

From line 16 on, the actual JScript code follows, which uses the BASIC program that is now running in the
background.

In line27, theuser is asked for adesiredamount. Theuser canenter amaximumof threedigits.

In line 28 the desired amount is sent to abc (our BASIC program). The answer is used via the identifier Zufall later
in line 54 and line 55.

If you read the BASIC code carefully you will notice that the sent value is not used at all. Only line 6 is used to
check if something was sent at all, otherwise the program will continue to wait in a continuous loop. However,
the special command [ABC:. . .] requires a field name as argument, andWunschbetrag in line 28 is the only field
name defined in JScript so far (see also section 13.13.2 on page 126).

Line 55 uses the cutting a section of a string special command via the two parameters start position and
length. This procedure was already used in the previous example. New is the indexing using SPLIT in lines 37
and 42. SPLIT expects an identifier and an index as parameters. The record to which the identifier points should
be separated with the special character Group Separator, accessible via [U:GS]. On the newer printers based on
the SQUIX board, other separators can also be used, but the Group Separator is compatible with all printers and
is also used by the Database Connector.

Exciting are the checks, which are completely implemented in JScript here. They are single checks, which must
result in a 1 if everything is ok. If we multiply the results of the checks, a wrong result (value 0) is enough to make
the whole multiplication become 0.

Line 45 only accepts values starting from 10 (only three-digit integers are to be expected from the query). Line 46
limits up to and including 500 and lines 47 and 48 only allowmultiples of 10.

In the layout part the elements become conditionally (un)visible, depending on whether the line ends with
[I:CHECK] or [I:!CHECK]. With [I:CHECK] the line becomes invisible if all conditions are fulfilled together. [I:!CHECK]
reverses the logic, the element is hidden if one of the conditions is not fulfilled.

In any case the input is written to the database together with the random number and a date/time stamp. So
you can see the wrong input in the database. The database entry is only made when the voucher has also been
printed.

; random generator with BASIC
<ABC>
POKE "bypass",1
REPEAT
 a$ = JGET$
UNTIL (a$ <> "")

Zufall$=""
FOR i = 1 TO 16
 Zufall$ = Zufall$ + CHR$(INT(RAN(24))+ASC("A"))
NEXT
JPUT Zufall$
END
</ABC>

J
S l1; 0, 0, 68, 71, 100
H 150, 0

; options: single buffer, 180° rotation, prohibit a reprint
O S, R, U

; database connection to the file misc/Gutscheine.sqlite3
E SQLITE;Gutscheine

; user query and random calculation of the character string
T:Wunschbetrag; 0, 0, 0, 3, 3;[?:Wunschbetrag eingeben,,,D,M111][I]
T:Zufall; 0, 0, 0, 3, 3;[ABC:Wunschbetrag][I]

; create text string for plain text display of price
T:Hunderter; 0, 0, 0, 3, 3;[U:GS]einhundert[U:GS]zweihundert[U:GS]dreihundert[U:GS]vierhundert[U:GS]fünfhundert[I]
T:Zehner; 0, 0, 0, 3, 3;[U:GS]zehn[U:GS]zwanzig[U:GS]dreißig[U:GS]vierzig[U:GS]fünfzig[U:GS]sechzig[U:GS]siebzig[U:GS]achtzig[U:GS]neunzig[I]

; calculations
T:HUND1; 0, 0, 0, 3, 3;[/:Wunschbetrag,100][I]
T:HUND2; 0, 0, 0, 3, 3;[+:HUND1,1][I]
T:HTEXT; 0, 0, 0, 3, 3;[SPLIT:Hunderter,HUND2][I]

T:ZEHN1; 0, 0, 0, 3, 3;[%:Wunschbetrag,100][I]
T:ZEHN2; 0, 0, 0, 3, 3;[/:ZEHN1,10][I]
T:ZEHN3; 0, 0, 0, 3, 3;[+:ZEHN2,1][I]
T:ZTEXT; 0, 0, 0, 3, 3;[SPLIT:Zehner,ZEHN3][I]

; checks
T:CHK1; 0, 0, 0, 3, 3;[>:Wunschbetrag,9][I]
T:CHK2; 0, 0, 0, 3, 3;[<:Wunschbetrag,501][I]
T:CHK3; 0, 0, 0, 3, 3;[%:Wunschbetrag,10][I]
T:CHK4; 0, 0, 0, 3, 3;[=:CHK3,0][I]
T:CHECK; 0, 0, 0, 3, 3;[*:CHK1,CHK2,CHK4][I]

T 20, 60, 35, 3, 15, b;UNGÜLTIG![I:CHECK]

; layout
B 0, 5, 0, code128, 20, 0.4;[Zufall][J:c100][I:!CHECK]
T 0, 30, 0, 3, 6;[Zufall,1,4] [Zufall,5,4] [Zufall,9,4] [Zufall,13,4][J:c100][I:!CHECK]
T 0, 50, 0, 3, 12, b;[Wunschbetrag] [U:$20AC][J:c100][I:!CHECK]
T 0, 58, 0, 3, 4;In Worten [HTEXT][ZTEXT] Euro[J:c100][I:!CHECK]

; filling the database
T:DAT; 0, 0, 0, 3, 3;[DATE][I]
T:TIM; 0, 0, 0, 3, 3;[TIME][I]
T 0, 0, 0, 5, pt10;[SQLLOG:INSERT INTO Gutscheine VALUES ('{DAT}','{TIM}','{Zufall}','{Wunschbetrag}')][I]

A 1

96 12 Best practice examples

16 J
17 S l1; 0, 0, 68, 71, 100
18 H 150, 0
19

20 ; options: single buffer, 180° rotation, prohibit a reprint
21 O S, R, U
22

23 ; database connection to the file misc/Gutscheine.sqlite3
24 E SQLITE;Gutscheine
25

26 ; user query and random calculation of the character string
27 T:Wunschbetrag; 0, 0, 0, 3, 3;[?:Wunschbetrag eingeben,,,D,M111][I]
28 T:Zufall; 0, 0, 0, 3, 3;[ABC:Wunschbetrag][I]
29

30 ; create text string for plain text display of price
31 T:Hunderter; 0, 0, 0, 3, 3;[U:GS]einhundert[U:GS]zweihundert[U:GS]dreihundert[U:GS]…

vierhundert[U:GS]fünfhundert[I]
32 T:Zehner; 0, 0, 0, 3, 3;[U:GS]zehn[U:GS]zwanzig[U:GS]dreißig[U:GS]vierzig[U:GS]fü…

nfzig[U:GS]sechzig[U:GS]siebzig[U:GS]achtzig[U:GS]neunzig[I]
33

34 ; calculations
35 T:HUND1; 0, 0, 0, 3, 3;[/:Wunschbetrag,100][I]
36 T:HUND2; 0, 0, 0, 3, 3;[+:HUND1,1][I]
37 T:HTEXT; 0, 0, 0, 3, 3;[SPLIT:Hunderter,HUND2][I]
38

39 T:ZEHN1; 0, 0, 0, 3, 3;[%:Wunschbetrag,100][I]
40 T:ZEHN2; 0, 0, 0, 3, 3;[/:ZEHN1,10][I]
41 T:ZEHN3; 0, 0, 0, 3, 3;[+:ZEHN2,1][I]
42 T:ZTEXT; 0, 0, 0, 3, 3;[SPLIT:Zehner,ZEHN3][I]
43

44 ; checks
45 T:CHK1; 0, 0, 0, 3, 3;[>:Wunschbetrag,9][I]
46 T:CHK2; 0, 0, 0, 3, 3;[<:Wunschbetrag,501][I]
47 T:CHK3; 0, 0, 0, 3, 3;[%:Wunschbetrag,10][I]
48 T:CHK4; 0, 0, 0, 3, 3;[=:CHK3,0][I]
49 T:CHECK; 0, 0, 0, 3, 3;[*:CHK1,CHK2,CHK4][I]
50

51 T 20, 60, 35, 3, 15, b;UNGÜLTIG![I:CHECK]
52

53 ; layout
54 B 0, 5, 0, code128, 20, 0.4;[Zufall][J:c100][I:!CHECK]
55 T 0, 30, 0, 3, 6;[Zufall,1,4] [Zufall,5,4] [Zufall,9,4] [Zufall,13,4][J:c100][I:!…

CHECK]
56 T 0, 50, 0, 3, 12, b;[Wunschbetrag] [U:$20AC][J:c100][I:!CHECK]
57 T 0, 58, 0, 3, 4;In Worten [HTEXT][ZTEXT] Euro[J:c100][I:!CHECK]
58

59 ; filling the database
60 T:DAT; 0, 0, 0, 3, 3;[DATE][I]
61 T:TIM; 0, 0, 0, 3, 3;[TIME][I]
62 T 0, 0, 0, 5, pt10;[SQLLOG:INSERT INTO Gutscheine VALUES ('{DAT}','{TIM}','{Zufall…

}','{Wunschbetrag}')][I]
63

64 A 1

Listing 12.3: A voucher with plain text and barcode on it logged into a database

12 Best practice examples 97

If you want to write the incorrect entries into a separate table, you can change the code. The example would
then end as in listing 12.4 (replaces the part from line 59 on).

59 ; filling the database
60 T:DAT; 0, 0, 0, 3, 3;[DATE][I]
61 T:TIM; 0, 0, 0, 3, 3;[TIME][I]
62

63 T:CHECKIDX; 0, 0, 0, 3, 3;[+:CHECK,1][I]
64 T:Tabellen; 0, 0, 0, 3, 3;Fehleingaben[U:GS]Gutscheine[I]
65 T:wohindamit; 0, 0, 0, 3, 3;[SPLIT:Tabellen,CHECKIDX][I]
66

67 T 0, 0, 0, 5, pt10;[SQLLOG:INSERT INTO {wohindamit} VALUES ('{DAT}','{TIM}','{Zufall…
}','{Wunschbetrag}')][I]

68

69 A 1

Listing 12.4: Log incorrect entries in a separate table

12.3 Printing data from a CSV file

As amore complex example of programmingwith ABC, the import of a CSV file shall demonstrate it. The following
program (listing 12.5), stored as CSVPrinter.lbl in the labels directory of the printer’s default memory, will read a
CSV file, ignore the first line and then pass the twenty-first to twenty-fifth record as CSV using the JScript Replace
command and print the desired number of labels (here one label at a time).

1 <ABC>
2 REM Set parameters as a block of variables
3 CSV_Datei$ = "regional-averages-tm-year.csv"
4 Titelzeile = TRUE
5 Trenner$ = "|;,"
6 Layout$ = "CSV-Layout"
7 Anzahl = 1
8 von = 21
9 bis = 25

10

11 REM ------8<---
12

13 REM load the layout
14 PRINT "M l LBL;" + Layout$
15

16 REM open the comma separated value file for read
17 OPEN #1,CSV_Datei$,"r"
18

19 REM skip the first line (it usually contains the field names)
20 IF (Titelzeile) THEN
21 LINE INPUT #1 Titelzeile$
22 ENDIF
23

24 REM where are we? (remember the line number)
25 Position = 0
26

27 WHILE(NOT EOF(1))
28 REM read in a complete line (without <CR>)
29 LINE INPUT #1 Zeile$
30

; random generator with BASIC
<ABC>
POKE "bypass",1
REPEAT
 a$ = JGET$
UNTIL (a$ <> "")

Zufall$=""
FOR i = 1 TO 16
 Zufall$ = Zufall$ + CHR$(INT(RAN(24))+ASC("A"))
NEXT
JPUT Zufall$
END
</ABC>

J
S l1; 0, 0, 68, 71, 100
H 150, 0

; options: single buffer, 180° rotation, prohibit a reprint
O S, R, U

; database connection to the file misc/Gutscheine.sqlite3
E SQLITE;Gutscheine

; user query and random calculation of the character string
T:Wunschbetrag; 0, 0, 0, 3, 3;[?:Wunschbetrag eingeben,,,D,M111][I]
T:Zufall; 0, 0, 0, 3, 3;[ABC:Wunschbetrag][I]

; create text string for plain text display of price
T:Hunderter; 0, 0, 0, 3, 3;[U:GS]einhundert[U:GS]zweihundert[U:GS]dreihundert[U:GS]vierhundert[U:GS]fünfhundert[I]
T:Zehner; 0, 0, 0, 3, 3;[U:GS]zehn[U:GS]zwanzig[U:GS]dreißig[U:GS]vierzig[U:GS]fünfzig[U:GS]sechzig[U:GS]siebzig[U:GS]achtzig[U:GS]neunzig[I]

; calculations
T:HUND1; 0, 0, 0, 3, 3;[/:Wunschbetrag,100][I]
T:HUND2; 0, 0, 0, 3, 3;[+:HUND1,1][I]
T:HTEXT; 0, 0, 0, 3, 3;[SPLIT:Hunderter,HUND2][I]

T:ZEHN1; 0, 0, 0, 3, 3;[%:Wunschbetrag,100][I]
T:ZEHN2; 0, 0, 0, 3, 3;[/:ZEHN1,10][I]
T:ZEHN3; 0, 0, 0, 3, 3;[+:ZEHN2,1][I]
T:ZTEXT; 0, 0, 0, 3, 3;[SPLIT:Zehner,ZEHN3][I]

; checks
T:CHK1; 0, 0, 0, 3, 3;[>:Wunschbetrag,9][I]
T:CHK2; 0, 0, 0, 3, 3;[<:Wunschbetrag,501][I]
T:CHK3; 0, 0, 0, 3, 3;[%:Wunschbetrag,10][I]
T:CHK4; 0, 0, 0, 3, 3;[=:CHK3,0][I]
T:CHECK; 0, 0, 0, 3, 3;[*:CHK1,CHK2,CHK4][I]

T 20, 60, 35, 3, 15, b;UNGÜLTIG![I:CHECK]

; layout
B 0, 5, 0, code128, 20, 0.4;[Zufall][J:c100][I:!CHECK]
T 0, 30, 0, 3, 6;[Zufall,1,4] [Zufall,5,4] [Zufall,9,4] [Zufall,13,4][J:c100][I:!CHECK]
T 0, 50, 0, 3, 12, b;[Wunschbetrag] [U:$20AC][J:c100][I:!CHECK]
T 0, 58, 0, 3, 4;In Worten [HTEXT][ZTEXT] Euro[J:c100][I:!CHECK]

; filling the database
T:DAT; 0, 0, 0, 3, 3;[DATE][I]
T:TIM; 0, 0, 0, 3, 3;[TIME][I]

T:CHECKIDX; 0, 0, 0, 3, 3;[+:CHECK,1][I]
T:Tabellen; 0, 0, 0, 3, 3;Fehleingaben[U:GS]Gutscheine[I]
T:wohindamit; 0, 0, 0, 3, 3;[SPLIT:Tabellen,CHECKIDX][I]

T 0, 0, 0, 5, pt10;[SQLLOG:INSERT INTO {wohindamit} VALUES ('{DAT}','{TIM}','{Zufall}','{Wunschbetrag}')][I]

A 1

98 12 Best practice examples

31 REM ignore empty lines
32 IF (Zeile$ = "") THEN
33 CONTINUE
34 ELSE
35 Position = Position + 1
36 ENDIF
37

38 REM go to the selected area of data
39 IF (Position < von) THEN
40 CONTINUE
41 ENDIF
42 IF (Position > bis) THEN
43 BREAK
44 ENDIF
45

46 REM change separator character to [GS]
47 FOR i = 1 TO LEN(Zeile$)
48 IF (INSTR(Trenner$, MID$(Zeile$,i,1))) THEN
49 MID$(Zeile$,i,1) = CHR$(29)
50 ENDIF
51 NEXT
52

53 REM print the right among of labels
54 PRINT "R CSV;" + Zeile$
55 PRINT "A " + STR$(Anzahl)
56 WEND
57

58 REM and don't forget to close the opened files
59 CLOSE #1
60 </ABC>

Listing 12.5: Template to read in a CSV file with abc as a data source for JScript

The program can be used universally. Only the first part with the parameters must be adapted. If you want to
print all records, you have to select 1 and 999999 (a number higher than the number of expected records) for von
and bis. All characters in the character string Trenner$ are exchanged by the character [GS] (Group Separator, for
the JScript special function [SPLIT:CSV,Index]).

Thedataof this example isprovidedby theGermanWeatherServiceandcanbedownloadedhere:

https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/
air_temperature_mean/

From there, load the CSV file “regional_averages_tm_year.txt” and change the file extension to “.csv” if you want
to reproduce the example.

Note that here all three characters from the Trenner$ parameter are replaced by a Group Separator. A CSV file
should therefore be read appropriately, in this case better that way:

5 Trenner$ = ";"

The layout was stored in the file CSV-Layout.lbl. It could look like this (listing 12.6).

<ABC>
REM Set parameters as a block of variables
CSV_Datei$ = "regional-averages-tm-year.csv"
Titelzeile = TRUE
Trenner$ = "|;,"
Layout$ = "CSV-Layout"
Anzahl = 1
von = 21
bis = 25

REM ------8<---

REM load the layout
PRINT "M l LBL;" + Layout$

REM open the comma separated value file for read
OPEN #1,CSV_Datei$,"r"

REM skip the first line (it usually contains the field names)
IF (Titelzeile) THEN
 LINE INPUT #1 Titelzeile$
ENDIF

REM where are we? (remember the line number)
Position = 0

WHILE(NOT EOF(1))
 REM read in a complete line (without <CR>)
 LINE INPUT #1 Zeile$

 REM ignore empty lines
 IF (Zeile$ = "") THEN
 CONTINUE
 ELSE
 Position = Position + 1
 ENDIF

 REM go to the selected area of data
 IF (Position < von) THEN
 CONTINUE
 ENDIF
 IF (Position > bis) THEN
 BREAK
 ENDIF

 REM change separator character to [GS]
 FOR i = 1 TO LEN(Zeile$)
 IF (INSTR(Trenner$, MID$(Zeile$,i,1))) THEN
 MID$(Zeile$,i,1) = CHR$(29)
 ENDIF
 NEXT

 REM print the right among of labels
 PRINT "R CSV;" + Zeile$
 PRINT "A " + STR$(Anzahl)
WEND

REM and don't forget to close the opened files
CLOSE #1
</ABC>

https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/air_temperature_mean/
https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/air_temperature_mean/

12 Best practice examples 99

Figure 12.3: Annual average temperatures are read from a CSV file with climate data (source: Deutscher Wetterdienst).

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 0
5

6 ; get Data from csv file
7 T:CSV; 0, 0, 0, 3, 3;nix[I]
8

9 T 10, 15, 0, 5, 6;Jahresmitteltemperatur [SPLIT:CSV,1]
10 G 5, 17, 0;L: 90, 0.1
11

12 T 10, 25, 0, 3, 5;Niedersachsen
13 T 10, 30, 0, 3, 5;Thüringen
14 T 10, 35, 0, 3, 5;Baden-Württemberg
15 T 10, 40, 0, 3, 5;Bayern
16 T 10, 45, 0, 3, 5;Deutschland
17

18 T 70, 25, 0, 3, 5;[SPLIT:CSV,9]°C
19 T 70, 30, 0, 3, 5;[SPLIT:CSV,18]°C
20 T 70, 35, 0, 3, 5;[SPLIT:CSV,5]°C
21 T 70, 40, 0, 3, 5;[SPLIT:CSV,6]°C
22 T 70, 45, 0, 3, 5;[SPLIT:CSV,19]°C

Listing 12.6: In the layout the identifier CSV can be used to process the file from the source line by line. The SPLIT command leads to the
individual values.

Zeitreihen fuer Gebietsmittel fuer Bundeslaender und Kombinationen von Bundeslaender, erstellt am: 20200702
Jahr;Jahr;Brandenburg/Berlin;Brandenburg;Baden-Wuerttemberg;Bayern;Hessen;Mecklenburg-Vorpommern;Niedersachsen;Niedersachsen/Hamburg/Bremen;Nordrhein-Westfalen;Rheinland-Pfalz;Schleswig-Holstein;Saarland;Sachsen;Sachsen-Anhalt;Thueringen/Sachsen-Anhalt;Thueringen;Deutschland;
1881;year; 7.55; 7.54; 7.66; 6.61; 7.49; 6.96; 7.54; 7.54; 8.14; 7.97; 7.12; 8.28; 6.71; 7.46; 7.11; 6.66; 7.31;
1882;year; 8.99; 8.97; 8.08; 7.33; 8.25; 8.54; 8.88; 8.88; 9.03; 8.55; 8.78; 8.79; 8.12; 8.81; 8.35; 7.77; 8.34;
1883;year; 8.42; 8.41; 7.77; 6.85; 7.96; 7.95; 8.39; 8.39; 8.71; 8.26; 8.18; 8.51; 7.46; 8.32; 7.87; 7.31; 7.88;
1884;year; 9.11; 9.10; 8.44; 7.52; 8.58; 8.73; 9.09; 9.10; 9.39; 8.94; 8.86; 9.18; 8.21; 8.94; 8.47; 7.89; 8.57;
1885;year; 8.40; 8.39; 7.82; 7.04; 7.66; 7.68; 7.94; 7.94; 8.31; 8.01; 7.62; 8.30; 7.73; 8.07; 7.67; 7.16; 7.74;
1886;year; 8.51; 8.50; 8.13; 7.27; 8.07; 7.87; 8.21; 8.21; 8.71; 8.45; 7.83; 8.69; 7.85; 8.36; 7.94; 7.42; 8.02;
1887;year; 7.76; 7.75; 6.74; 5.92; 6.75; 7.36; 7.42; 7.42; 7.60; 7.13; 7.34; 7.32; 6.72; 7.50; 6.93; 6.22; 6.95;
1888;year; 7.40; 7.39; 6.96; 6.17; 6.79; 6.75; 7.11; 7.12; 7.44; 7.11; 6.69; 7.32; 6.66; 7.29; 6.82; 6.22; 6.85;
1889;year; 8.14; 8.12; 7.11; 6.39; 7.30; 7.59; 7.96; 7.96; 8.05; 7.45; 7.73; 7.62; 7.11; 7.96; 7.42; 6.73; 7.38;
1890;year; 8.13; 8.12; 7.03; 6.45; 7.25; 7.56; 7.68; 7.68; 7.78; 7.41; 7.62; 7.64; 7.20; 7.85; 7.33; 6.69; 7.31;
1891;year; 8.22; 8.21; 7.23; 6.47; 7.38; 7.59; 7.84; 7.85; 8.07; 7.52; 7.61; 7.73; 7.36; 8.00; 7.49; 6.85; 7.43;
1892;year; 7.95; 7.94; 7.78; 6.88; 7.47; 7.17; 7.63; 7.63; 8.17; 7.85; 7.12; 8.07; 7.36; 7.89; 7.46; 6.92; 7.50;
1893;year; 8.26; 8.25; 8.09; 6.98; 7.96; 7.62; 8.29; 8.29; 8.82; 8.39; 7.85; 8.68; 7.63; 8.32; 7.86; 7.27; 7.91;
1894;year; 8.71; 8.70; 7.99; 7.20; 8.06; 8.19; 8.60; 8.61; 8.86; 8.30; 8.41; 8.53; 7.94; 8.63; 8.11; 7.46; 8.13;
1895;year; 8.03; 8.02; 7.33; 6.39; 7.21; 7.37; 7.64; 7.65; 7.91; 7.49; 7.35; 7.79; 7.30; 7.84; 7.32; 6.68; 7.31;
1896;year; 8.33; 8.32; 7.38; 6.40; 7.55; 7.94; 8.16; 8.16; 8.25; 7.80; 8.08; 8.03; 7.39; 8.10; 7.54; 6.83; 7.58;
1897;year; 8.29; 8.28; 8.21; 7.08; 7.95; 7.86; 8.25; 8.25; 8.59; 8.31; 7.97; 8.60; 7.85; 8.33; 7.89; 7.34; 7.95;
1898;year; 9.05; 9.05; 8.59; 7.63; 8.47; 8.36; 8.86; 8.87; 9.10; 8.68; 8.51; 8.93; 8.63; 9.01; 8.53; 7.94; 8.50;
1899;year; 8.59; 8.58; 8.27; 7.01; 8.08; 8.13; 8.55; 8.56; 8.77; 8.40; 8.38; 8.67; 7.91; 8.56; 8.04; 7.39; 8.09;
1900;year; 8.83; 8.81; 8.54; 7.46; 8.35; 8.25; 8.75; 8.75; 8.88; 8.69; 8.35; 8.97; 8.26; 8.81; 8.34; 7.75; 8.35;
1901;year; 8.33; 8.32; 7.41; 6.80; 7.50; 7.76; 8.11; 8.12; 8.27; 7.91; 7.94; 8.07; 7.50; 8.10; 7.49; 6.72; 7.64;
1902;year; 7.26; 7.25; 7.53; 6.83; 7.26; 6.58; 7.34; 7.34; 7.73; 7.70; 6.97; 7.92; 6.91; 7.27; 6.87; 6.36; 7.17;
1903;year; 8.98; 8.97; 8.08; 7.56; 8.31; 8.23; 8.82; 8.82; 8.89; 8.47; 8.39; 8.56; 8.43; 8.98; 8.48; 7.85; 8.35;
1904;year; 8.84; 8.83; 8.45; 7.81; 8.30; 8.02; 8.60; 8.60; 8.79; 8.60; 8.20; 8.74; 8.29; 8.81; 8.37; 7.82; 8.36;
1905;year; 8.57; 8.56; 7.79; 7.24; 7.94; 7.93; 8.28; 8.29; 8.46; 8.20; 8.05; 8.32; 7.82; 8.42; 7.93; 7.32; 7.95;
1906;year; 9.08; 9.07; 7.99; 7.36; 8.23; 8.39; 8.79; 8.80; 8.81; 8.37; 8.54; 8.51; 8.22; 8.95; 8.38; 7.67; 8.29;
1907;year; 8.21; 8.20; 7.90; 7.23; 7.84; 7.50; 8.06; 8.06; 8.42; 8.06; 7.59; 8.30; 7.71; 8.13; 7.71; 7.19; 7.80;
1908;year; 8.04; 8.03; 7.27; 6.60; 7.35; 7.57; 7.98; 7.99; 8.15; 7.57; 7.82; 7.85; 7.36; 7.93; 7.44; 6.82; 7.47;
1909;year; 7.85; 7.85; 7.23; 6.61; 7.37; 7.25; 7.70; 7.71; 7.94; 7.66; 7.34; 7.92; 7.30; 7.80; 7.34; 6.75; 7.35;
1910;year; 9.03; 9.03; 8.03; 7.48; 8.36; 8.59; 8.98; 8.99; 9.09; 8.48; 8.75; 8.67; 8.36; 8.87; 8.39; 7.78; 8.41;
1911;year; 9.66; 9.65; 8.77; 8.16; 9.07; 9.02; 9.49; 9.50; 9.74; 9.27; 9.08; 9.53; 9.02; 9.66; 9.14; 8.48; 9.05;
1912;year; 8.19; 8.18; 7.74; 6.96; 7.88; 7.71; 8.33; 8.34; 8.76; 8.26; 7.97; 8.47; 7.66; 8.24; 7.82; 7.30; 7.86;
1913;year; 9.24; 9.22; 8.24; 7.55; 8.43; 8.79; 8.99; 9.00; 9.22; 8.74; 8.82; 9.00; 8.40; 9.06; 8.52; 7.85; 8.53;
1914;year; 9.26; 9.25; 7.95; 7.35; 8.35; 9.15; 9.23; 9.24; 9.23; 8.58; 9.22; 8.78; 8.39; 9.11; 8.52; 7.78; 8.52;
1915;year; 8.27; 8.25; 7.93; 7.36; 8.09; 7.63; 8.07; 8.08; 8.54; 8.51; 7.63; 8.73; 7.74; 8.20; 7.79; 7.28; 7.91;
1916;year; 8.99; 8.98; 8.34; 8.00; 8.42; 8.33; 8.57; 8.57; 8.90; 8.78; 8.19; 8.92; 8.44; 8.80; 8.38; 7.85; 8.45;
1917;year; 8.17; 8.16; 7.26; 6.85; 7.52; 7.62; 7.93; 7.94; 7.99; 7.75; 7.74; 7.82; 7.38; 7.98; 7.48; 6.85; 7.54;
1918;year; 9.15; 9.15; 8.25; 7.85; 8.49; 8.47; 8.88; 8.88; 9.13; 8.85; 8.43; 8.95; 8.53; 8.95; 8.53; 7.98; 8.53;
1919;year; 7.67; 7.66; 7.34; 6.81; 7.26; 7.27; 7.48; 7.48; 7.85; 7.79; 7.20; 7.89; 7.09; 7.66; 7.20; 6.61; 7.32;
1920;year; 8.99; 8.98; 8.47; 8.12; 8.51; 8.54; 8.95; 8.96; 9.22; 8.82; 8.57; 8.95; 8.48; 9.02; 8.57; 7.99; 8.63;
1921;year; 9.44; 9.42; 8.82; 8.33; 8.96; 9.04; 9.33; 9.33; 9.62; 9.45; 9.08; 9.52; 8.75; 9.41; 8.89; 8.23; 9.00;
1922;year; 7.38; 7.37; 7.29; 6.68; 7.10; 7.10; 7.44; 7.44; 7.80; 7.71; 7.10; 7.82; 6.91; 7.44; 6.98; 6.41; 7.19;
1923;year; 8.18; 8.16; 8.23; 7.65; 8.02; 7.61; 8.02; 8.02; 8.46; 8.56; 7.59; 8.65; 7.88; 8.21; 7.86; 7.44; 7.99;
1924;year; 7.97; 7.96; 7.43; 6.74; 7.40; 7.46; 7.96; 7.97; 8.15; 7.80; 7.58; 7.95; 7.46; 8.01; 7.56; 6.99; 7.53;
1925;year; 9.02; 9.01; 7.94; 7.42; 8.18; 8.55; 8.82; 8.83; 8.84; 8.49; 8.51; 8.52; 8.34; 8.94; 8.43; 7.78; 8.32;
1926;year; 9.25; 9.24; 8.64; 8.04; 8.70; 8.74; 9.07; 9.07; 9.31; 9.02; 8.69; 9.08; 8.63; 9.17; 8.72; 8.16; 8.74;
1927;year; 8.35; 8.35; 8.02; 7.52; 7.99; 7.92; 8.28; 8.28; 8.59; 8.37; 8.03; 8.51; 7.80; 8.40; 7.96; 7.40; 8.04;
1928;year; 8.58; 8.57; 8.59; 7.94; 8.34; 8.03; 8.47; 8.47; 8.89; 8.84; 8.10; 8.98; 8.03; 8.58; 8.16; 7.63; 8.35;
1929;year; 7.60; 7.59; 7.52; 6.73; 7.55; 6.99; 7.50; 7.50; 8.16; 7.99; 7.11; 8.12; 7.14; 7.64; 7.27; 6.80; 7.36;
1930;year; 9.17; 9.16; 8.66; 8.05; 8.79; 8.64; 9.05; 9.05; 9.43; 9.13; 8.73; 9.27; 8.60; 9.18; 8.74; 8.19; 8.76;
1931;year; 8.11; 8.10; 7.18; 6.60; 7.56; 7.60; 8.08; 8.08; 8.28; 7.86; 7.71; 8.00; 7.42; 8.16; 7.66; 7.04; 7.55;
1932;year; 8.95; 8.94; 7.90; 7.43; 8.18; 8.58; 8.89; 8.89; 8.99; 8.46; 8.68; 8.66; 8.13; 8.93; 8.40; 7.75; 8.33;
1933;year; 7.93; 7.92; 7.35; 6.64; 7.70; 7.78; 8.16; 8.17; 8.43; 8.13; 8.29; 8.42; 7.15; 7.96; 7.49; 6.89; 7.62;
1934;year; 10.38; 10.37; 8.98; 8.68; 9.51; 9.72; 9.96; 9.96; 10.05; 9.67; 9.70; 9.79; 9.57; 10.27; 9.75; 9.10; 9.54;
1935;year; 8.93; 8.92; 8.03; 7.55; 8.43; 8.49; 8.93; 8.93; 9.14; 8.79; 8.65; 8.94; 8.22; 8.97; 8.46; 7.83; 8.42;
1936;year; 8.92; 8.91; 8.15; 7.65; 8.39; 8.31; 8.79; 8.79; 8.95; 8.66; 8.36; 8.83; 8.25; 8.90; 8.43; 7.83; 8.38;
1937;year; 8.94; 8.94; 8.56; 7.94; 8.66; 8.41; 8.85; 8.85; 9.22; 9.03; 8.43; 9.27; 8.42; 8.96; 8.58; 8.09; 8.59;
1938;year; 9.34; 9.33; 8.06; 7.56; 8.45; 8.99; 9.22; 9.23; 9.21; 8.72; 9.10; 8.96; 8.46; 9.24; 8.67; 7.95; 8.60;
1939;year; 8.93; 8.91; 7.91; 7.28; 8.21; 8.51; 8.90; 8.90; 9.08; 8.56; 8.64; 8.77; 8.07; 8.87; 8.34; 7.67; 8.30;
1940;year; 6.68; 6.66; 6.82; 6.04; 6.68; 6.20; 6.95; 6.94; 7.52; 7.28; 6.50; 7.58; 6.17; 6.73; 6.38; 5.93; 6.63;
1941;year; 7.33; 7.32; 7.10; 6.43; 7.30; 6.92; 7.58; 7.58; 8.11; 7.71; 7.11; 7.95; 6.68; 7.42; 7.03; 6.53; 7.16;
1942;year; 7.56; 7.55; 7.43; 6.71; 7.34; 6.91; 7.46; 7.46; 8.00; 7.81; 6.95; 8.10; 7.05; 7.62; 7.23; 6.74; 7.28;
1943;year; 9.33; 9.31; 8.80; 8.15; 8.79; 8.93; 9.20; 9.20; 9.47; 9.14; 8.97; 9.38; 8.79; 9.33; 8.92; 8.40; 8.88;
1944;year; 9.05; 9.04; 7.83; 7.30; 8.26; 8.56; 8.87; 8.87; 8.90; 8.43; 8.61; 8.64; 8.14; 8.97; 8.41; 7.71; 8.29;
1945;year; 9.54; 9.53; 8.71; 8.07; 9.03; 9.30; 9.38; 9.38; 9.63; 9.33; 9.13; 9.51; 8.92; 9.18; 8.88; 8.50; 8.98;
1946;year; 8.85; 8.84; 8.20; 7.81; 8.34; 8.80; 8.64; 8.65; 8.87; 8.49; 8.22; 8.66; 8.17; 8.77; 8.34; 7.80; 8.38;
1947;year; 8.38; 8.37; 8.85; 8.23; 8.76; 7.75; 8.55; 8.55; 9.31; 9.27; 8.00; 9.54; 8.16; 8.57; 8.26; 7.87; 8.51;
1948;year; 9.60; 9.58; 8.66; 8.28; 8.95; 8.96; 9.53; 9.53; 9.73; 9.20; 9.08; 9.50; 9.11; 9.69; 9.18; 8.53; 9.05;
1949;year; 9.60; 9.59; 8.92; 8.37; 9.13; 9.16; 9.50; 9.50; 9.77; 9.52; 9.31; 9.93; 8.93; 9.69; 9.19; 8.55; 9.14;
1950;year; 8.98; 8.97; 8.51; 8.07; 8.49; 8.46; 8.87; 8.88; 9.17; 8.82; 8.62; 9.13; 8.46; 9.00; 8.54; 7.97; 8.60;
1951;year; 9.25; 9.23; 8.48; 8.07; 8.68; 8.64; 8.99; 8.99; 9.32; 8.93; 8.68; 9.16; 8.87; 9.17; 8.77; 8.26; 8.72;
1952;year; 8.16; 8.15; 8.08; 7.41; 8.04; 7.64; 8.10; 8.10; 8.53; 8.45; 7.75; 8.74; 7.78; 8.22; 7.87; 7.41; 7.94;
1953;year; 9.64; 9.62; 8.39; 7.99; 8.93; 9.12; 9.40; 9.40; 9.51; 9.11; 9.15; 9.45; 9.06; 9.61; 9.17; 8.61; 8.94;
1954;year; 7.99; 7.98; 7.51; 6.88; 7.79; 7.54; 8.12; 8.12; 8.53; 8.10; 7.85; 8.35; 7.48; 8.10; 7.69; 7.17; 7.70;
1955;year; 7.90; 7.88; 7.49; 6.76; 7.44; 7.59; 7.97; 7.98; 8.26; 7.88; 7.78; 8.25; 7.23; 7.82; 7.39; 6.84; 7.54;
1956;year; 7.17; 7.15; 6.66; 6.03; 6.90; 6.93; 7.32; 7.33; 7.58; 7.20; 7.21; 7.45; 6.38; 7.10; 6.70; 6.19; 6.84;
1957;year; 8.99; 8.98; 8.27; 7.75; 8.61; 8.51; 9.04; 9.05; 9.38; 8.92; 8.67; 9.25; 8.49; 9.04; 8.62; 8.10; 8.58;
1958;year; 8.55; 8.54; 8.13; 7.50; 8.26; 7.98; 8.57; 8.57; 8.93; 8.55; 8.06; 8.86; 8.17; 8.63; 8.23; 7.72; 8.21;
1959;year; 9.31; 9.30; 8.82; 8.09; 9.21; 8.93; 9.45; 9.45; 9.93; 9.57; 9.07; 10.07; 8.84; 9.41; 9.05; 8.60; 9.03;
1960;year; 8.73; 8.72; 8.30; 7.67; 8.49; 8.17; 8.81; 8.81; 9.16; 8.82; 8.33; 9.15; 8.21; 8.78; 8.36; 7.83; 8.41;
1961;year; 9.28; 9.27; 9.00; 8.21; 8.91; 8.82; 9.23; 9.23; 9.59; 9.30; 8.94; 9.67; 8.89; 9.35; 8.94; 8.42; 8.94;
1962;year; 7.67; 7.66; 7.09; 6.40; 7.04; 7.22; 7.42; 7.43; 7.63; 7.53; 7.38; 7.88; 7.10; 7.54; 7.07; 6.48; 7.15;
1963;year; 7.68; 7.67; 6.99; 6.40; 7.01; 7.10; 7.32; 7.33; 7.65; 7.35; 7.13; 7.73; 7.22; 7.53; 7.09; 6.55; 7.10;
1964;year; 8.43; 8.42; 8.23; 7.41; 8.23; 7.95; 8.35; 8.35; 8.90; 8.63; 7.95; 9.01; 8.00; 8.41; 8.05; 7.59; 8.13;
1965;year; 7.85; 7.84; 7.35; 6.72; 7.53; 7.34; 7.86; 7.86; 8.16; 7.82; 7.54; 8.12; 7.39; 7.88; 7.45; 6.91; 7.48;
1966;year; 8.82; 8.81; 8.48; 7.94; 8.65; 8.19; 8.69; 8.69; 9.20; 8.93; 8.16; 9.21; 8.51; 8.85; 8.48; 8.01; 8.51;
1967;year; 9.58; 9.57; 8.46; 7.97; 8.88; 9.08; 9.39; 9.39; 9.51; 8.99; 9.09; 9.17; 8.90; 9.47; 8.98; 8.36; 8.89;
1968;year; 8.72; 8.71; 7.86; 7.30; 8.08; 8.27; 8.61; 8.62; 8.82; 8.28; 8.43; 8.55; 8.05; 8.59; 8.10; 7.47; 8.15;
1969;year; 7.81; 7.80; 7.65; 7.10; 7.85; 7.34; 8.20; 8.20; 8.73; 8.22; 7.76; 8.55; 7.53; 7.97; 7.59; 7.10; 7.75;
1970;year; 7.91; 7.90; 7.75; 7.05; 7.82; 7.33; 8.07; 8.07; 8.55; 8.19; 7.55; 8.51; 7.45; 7.97; 7.59; 7.10; 7.71;
1971;year; 9.05; 9.03; 8.07; 7.47; 8.42; 8.56; 8.94; 8.94; 9.16; 8.67; 8.64; 8.92; 8.33; 8.93; 8.44; 7.83; 8.43;
1972;year; 8.30; 8.29; 7.54; 7.03; 7.73; 7.86; 8.24; 8.24; 8.52; 8.04; 8.00; 8.34; 7.82; 8.22; 7.75; 7.16; 7.82;
1973;year; 8.69; 8.67; 7.82; 7.19; 8.30; 8.41; 8.77; 8.78; 9.00; 8.63; 8.57; 8.86; 8.00; 8.73; 8.20; 7.54; 8.21;
1974;year; 9.32; 9.30; 8.59; 8.04; 8.82; 8.78; 9.29; 9.30; 9.43; 9.08; 8.91; 9.40; 8.66; 9.36; 8.84; 8.18; 8.82;
1975;year; 9.58; 9.56; 8.49; 7.98; 8.91; 9.05; 9.49; 9.50; 9.59; 9.08; 9.16; 9.41; 8.88; 9.52; 9.00; 8.34; 8.93;
1976;year; 8.63; 8.62; 8.41; 7.69; 8.71; 8.01; 8.84; 8.84; 9.41; 9.19; 8.40; 9.56; 8.14; 8.77; 8.36; 7.86; 8.47;
1977;year; 9.08; 9.07; 8.56; 8.02; 8.67; 8.46; 9.06; 9.07; 9.31; 8.89; 8.60; 9.15; 8.49; 9.08; 8.64; 8.08; 8.67;
1978;year; 8.41; 8.40; 7.54; 6.91; 7.75; 7.83; 8.28; 8.28; 8.48; 7.96; 7.95; 8.13; 7.64; 8.28; 7.78; 7.16; 7.79;
1979;year; 8.03; 8.01; 8.01; 7.37; 7.65; 7.31; 7.77; 7.77; 8.22; 8.07; 7.23; 8.40; 7.67; 7.98; 7.57; 7.06; 7.72;
1980;year; 7.74; 7.73; 7.52; 6.88; 7.71; 7.33; 8.16; 8.16; 8.62; 8.07; 7.69; 8.29; 7.23; 7.92; 7.49; 6.95; 7.63;
1981;year; 8.66; 8.65; 8.10; 7.52; 8.08; 8.13; 8.55; 8.55; 8.86; 8.51; 8.03; 8.87; 8.02; 8.62; 8.14; 7.53; 8.19;
1982;year; 9.46; 9.44; 8.64; 8.06; 8.82; 8.68; 9.30; 9.30; 9.69; 9.09; 8.69; 9.51; 9.00; 9.55; 9.07; 8.45; 8.90;
1983;year; 9.68; 9.66; 8.78; 8.19; 8.87; 9.07; 9.53; 9.53; 9.70; 9.20; 9.12; 9.55; 9.03; 9.63; 9.08; 8.40; 9.04;
1984;year; 8.41; 8.40; 7.70; 7.06; 7.93; 8.02; 8.50; 8.50; 8.86; 8.29; 8.21; 8.69; 7.72; 8.41; 7.90; 7.25; 7.97;
1985;year; 7.91; 7.89; 7.42; 6.71; 7.28; 7.24; 7.80; 7.81; 8.03; 7.71; 7.36; 8.15; 7.33; 7.88; 7.38; 6.76; 7.42;
1986;year; 8.26; 8.24; 7.89; 7.33; 7.93; 7.75; 8.24; 8.24; 8.60; 8.29; 7.78; 8.63; 7.79; 8.20; 7.79; 7.27; 7.93;
1987;year; 7.55; 7.53; 7.68; 6.96; 7.42; 7.08; 7.73; 7.73; 8.23; 7.93; 7.32; 8.33; 7.01; 7.53; 7.13; 6.63; 7.44;
1988;year; 9.50; 9.49; 8.89; 8.32; 9.04; 8.99; 9.51; 9.51; 9.75; 9.35; 9.08; 9.60; 8.78; 9.56; 9.07; 8.46; 9.06;
1989;year; 10.15; 10.14; 9.04; 8.44; 9.38; 9.70; 9.99; 9.99; 10.26; 9.67; 9.60; 9.93; 9.52; 10.12; 9.60; 8.95; 9.47;
1990;year; 10.12; 10.11; 9.13; 8.45; 9.38; 9.76; 10.08; 10.08; 10.20; 9.70; 9.73; 9.99; 9.42; 10.07; 9.52; 8.83; 9.49;
1991;year; 8.94; 8.93; 8.22; 7.44; 8.27; 8.42; 8.80; 8.80; 9.01; 8.69; 8.46; 9.11; 8.16; 8.80; 8.30; 7.67; 8.35;
1992;year; 9.91; 9.90; 9.12; 8.60; 9.22; 9.34; 9.89; 9.90; 9.97; 9.54; 9.53; 9.82; 9.30; 9.91; 9.37; 8.70; 9.37;
1993;year; 8.83; 8.82; 8.57; 7.97; 8.53; 8.15; 8.64; 8.64; 9.08; 8.93; 8.17; 9.28; 8.26; 8.75; 8.32; 7.79; 8.47;
1994;year; 9.90; 9.89; 9.88; 9.35; 9.74; 9.23; 9.84; 9.84; 10.26; 10.14; 9.31; 10.54; 9.45; 9.97; 9.59; 9.11; 9.70;
1995;year; 9.21; 9.20; 8.77; 8.14; 8.93; 8.65; 9.32; 9.32; 9.77; 9.43; 8.86; 9.82; 8.54; 9.29; 8.82; 8.22; 8.90;
1996;year; 7.36; 7.35; 7.42; 6.70; 7.21; 6.93; 7.46; 7.47; 7.93; 7.78; 7.16; 8.30; 6.63; 7.28; 6.88; 6.39; 7.20;
1997;year; 9.24; 9.22; 8.81; 8.14; 8.88; 8.78; 9.35; 9.36; 9.65; 9.25; 8.96; 9.69; 8.46; 9.26; 8.81; 8.25; 8.89;
1998;year; 9.49; 9.48; 8.92; 8.41; 8.97; 8.89; 9.48; 9.48; 9.69; 9.25; 8.99; 9.49; 8.89; 9.59; 9.12; 8.54; 9.06;
1999;year; 10.05; 10.04; 9.05; 8.48; 9.46; 9.55; 10.21; 10.22; 10.35; 9.76; 9.65; 9.90; 9.18; 10.10; 9.56; 8.87; 9.49;
2000;year; 10.41; 10.39; 9.71; 9.12; 9.77; 9.74; 10.27; 10.27; 10.50; 10.09; 9.81; 10.29; 9.82; 10.39; 9.93; 9.36; 9.87;
2001;year; 9.22; 9.21; 9.00; 8.32; 9.10; 8.78; 9.41; 9.41; 9.85; 9.53; 8.85; 9.73; 8.62; 9.35; 8.95; 8.45; 9.02;
2002;year; 9.76; 9.75; 9.55; 8.98; 9.55; 9.42; 9.88; 9.88; 10.28; 10.05; 9.62; 10.29; 9.20; 9.70; 9.32; 8.84; 9.56;
2003;year; 9.50; 9.48; 9.45; 8.76; 9.50; 9.04; 9.66; 9.66; 10.14; 10.07; 9.20; 10.62; 9.01; 9.63; 9.23; 8.74; 9.38;
2004;year; 9.30; 9.29; 8.70; 8.17; 8.87; 8.95; 9.53; 9.54; 9.58; 9.23; 9.12; 9.54; 8.62; 9.34; 8.88; 8.29; 8.94;
2005;year; 9.33; 9.31; 8.60; 7.97; 9.13; 9.06; 9.64; 9.64; 9.88; 9.54; 9.24; 9.85; 8.59; 9.42; 8.97; 8.40; 8.99;
2006;year; 9.98; 9.96; 9.19; 8.55; 9.49; 9.66; 10.22; 10.23; 10.35; 9.94; 9.88; 10.26; 9.24; 10.02; 9.51; 8.87; 9.54;
2007;year; 10.35; 10.34; 9.47; 9.05; 9.76; 9.95; 10.41; 10.41; 10.48; 10.12; 10.04; 10.32; 9.68; 10.34; 9.86; 9.28; 9.85;
2008;year; 10.12; 10.11; 9.08; 8.73; 9.35; 9.71; 9.99; 9.99; 9.87; 9.55; 9.74; 9.73; 9.41; 10.01; 9.54; 8.95; 9.48;
2009;year; 9.48; 9.47; 9.00; 8.45; 9.13; 9.08; 9.71; 9.71; 9.81; 9.58; 9.28; 9.85; 8.91; 9.54; 9.12; 8.58; 9.18;
2010;year; 8.09; 8.08; 7.93; 7.34; 7.90; 7.69; 8.11; 8.11; 8.43; 8.37; 7.67; 8.71; 7.46; 7.99; 7.64; 7.20; 7.85;
2011;year; 9.94; 9.92; 9.64; 8.91; 9.68; 9.44; 9.99; 9.98; 10.38; 10.19; 9.40; 10.46; 9.37; 9.98; 9.60; 9.12; 9.64;
2012;year; 9.36; 9.35; 9.08; 8.53; 9.06; 8.85; 9.45; 9.45; 9.66; 9.46; 8.80; 9.72; 8.86; 9.44; 9.06; 8.59; 9.09;
2013;year; 9.19; 9.18; 8.56; 8.10; 8.66; 8.89; 9.06; 9.06; 9.20; 8.98; 8.78; 9.22; 8.39; 9.07; 8.64; 8.08; 8.71;
2014;year; 10.67; 10.66; 10.14; 9.60; 10.31; 10.24; 10.79; 10.80; 10.95; 10.67; 10.48; 10.93; 10.14; 10.68; 10.29; 9.79; 10.33;
2015;year; 10.36; 10.35; 9.89; 9.43; 9.91; 9.76; 10.15; 10.15; 10.35; 10.25; 9.71; 10.50; 9.93; 10.32; 9.96; 9.50; 9.94;
2016;year; 10.00; 9.98; 9.29; 8.88; 9.44; 9.62; 9.94; 9.94; 10.11; 9.76; 9.61; 9.90; 9.37; 10.08; 9.63; 9.03; 9.55;
2017;year; 9.92; 9.91; 9.40; 8.83; 9.56; 9.47; 9.97; 9.97; 10.31; 10.01; 9.57; 10.21; 9.39; 10.03; 9.63; 9.10; 9.58;
2018;year; 10.84; 10.82; 10.38; 9.89; 10.52; 10.20; 10.73; 10.73; 11.02; 10.84; 10.18; 11.10; 10.29; 10.88; 10.46; 9.91; 10.45;
2019;year; 11.07; 11.05; 9.87; 9.50; 10.13; 10.45; 10.67; 10.67; 10.74; 10.45; 10.18; 10.71; 10.35; 10.93; 10.43; 9.78; 10.28;

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0

; get Data from csv file
T:CSV; 0, 0, 0, 3, 3;nix[I]

T 10, 15, 0, 5, 6;Jahresmitteltemperatur [SPLIT:CSV,1]
G 5, 17, 0;L: 90, 0.1

T 10, 25, 0, 3, 5;Niedersachsen
T 10, 30, 0, 3, 5;Thüringen
T 10, 35, 0, 3, 5;Baden-Württemberg
T 10, 40, 0, 3, 5;Bayern
T 10, 45, 0, 3, 5;Deutschland

T 70, 25, 0, 3, 5;[SPLIT:CSV,9]°C
T 70, 30, 0, 3, 5;[SPLIT:CSV,18]°C
T 70, 35, 0, 3, 5;[SPLIT:CSV,5]°C
T 70, 40, 0, 3, 5;[SPLIT:CSV,6]°C
T 70, 45, 0, 3, 5;[SPLIT:CSV,19]°C

https://cdc.dwd.de/portal/

100 13 Advanced BASIC Compiler

13 Advanced BASIC Compiler

In addition to the JScript code, BASIC code can also be embedded. This code must be embedded between
the two lines <ABC> and </ABC>. The JScript interpreter then passes the abc code block as a whole to the
abc compiler. This will translate the code and run the generated program. The generated abc program
starts independently of the JScript interpreter as its own task. Execution start and speed are out of sync with
JScript.

You can only pass a single such code block. If a new code block is passed to the abc compiler while the old
BASIC program is still running, the newly passed code is initially only buffered. Only when an abc program is
terminated can new code be compiled from the buffer and brought to execution.

13.1 This is not a BASIC manual

The BASIC language is not explained here. Ask your favorite search engine for BASIC tutorials and books, there
are plenty of them.

The abc BASIC used in cab printers is derived from Yabasic. A (admittedly not very beginner-friendly) guide to
Yabasic can be found on the net:

http://www.yabasic.de/yabasic.htm

13.2 Either JScript or abc

If BASIC is used, you should not integrate JScript into the same label file, but embed the JScript code in the
BASIC program via the PRINT command. This is because it causes synchronization problems when pure JScript
code with an abc block is placed in a single file. The abc code usually takes a little longer to be compiled and
then executed. However, the timing cannot be predicted with certainty. If the JScript portion is sent from BASIC
via the PRINT command, it is clearly determined in the time sequence of the abc BASIC program when it is
executed.

13.3 Comments in abc

Not only JScript allows to insert comment lines, also in abc BASIC you canmake the program code readable
by comments for later maintenance. abc goes even further, allowing a line of other code to be commented
on by two slashes until the end of the line. Mixing command and comment in one line is not possible in
JScript.

If youwant to insert a pure comment line use the REM command. The listing 13.1 shows the use of both comment
forms.

http://www.yabasic.de/yabasic.htm

13 Advanced BASIC Compiler 101

13.4 The PRINT command

Theway fromabc toJScript is quite simple. Just use thecommandPRINT and “print” intoJScript.

Fromwithin the BASIC program, you can send a string to the JScript interpreter as a command line using the
PRINT command. The string is given without line end characters, the PRINT command automatically appends
the line end.

It should always be remembered that the timing of the processing of an embedded BASIC code is unpredictable
because the abc compiler and the JScript interpreter run independently of each other as separate processes in
the printer. The X2 motherboards still contained cab’s ownmonolithic architecture without multitasking. The
only process running was a continuous loop.

However, this disadvantage of the older systems (Linux was first introduced with the X3 motherboard) offered
predictability in the sequence of processing JScript and Advanced BASIC. This can lead to the fact that solutions
programmed for older systems can lead to problems on X4 mainboards today if JScript and BASIC are not
properly separated.

If a semicolon is appended to the PRINT command, the automatically appended <CR> Character omitted. Do
not forget to end the line with a PRINT command without a semicolon, otherwise you will get a non-executable
JScript code. An example shows the listing 13.5.

13.5 Conditional tasks and jumps

13.5.1 IF (condition) THEN . . . ELSIF (condition) THEN . . . ELSE . . . ENDIF

The IF statement canbe used in abc to attach a commandblock to a condition. The conditionmust be followedby
the keyword THEN. The ELSE part is optional and is executed if the condition results in FALSE. The keyword ENDIF,
withwhich the constructmust be terminated, ismandatory. ELSIF blocks canbe inserted in between. Any number
of them is allowed. The listing 13.2 shows examples of conditional statements.

A condition is a logical expression enclosed in round brackets. The following symbols are available (table 13.1).
They have different values for determining the order. Comparison operators are evaluated before the logical op-
erators (similar to the “dot-before-dash rule” in calculations). Mathematical calculation operators are processed
before the comparison operators.

Table 13.1: Logical operators in abc

Operator Content

= equal
<> not equal
> greater than
< less than
>= greater or equal
<= less or equal

AND logical AND (TRUE if both are TRUE , else FALSE)
OR logical OR (TRUE at least one argument is TRUE, else FALSE)
NOT logical NOT (TRUE if FALSE, else FALSE)

102 13 Advanced BASIC Compiler

There is also a short form of the IF instruction. If you write the condition and the conditional command together
with the IF in only one line of code, you can do without THEN and ENDIF.

Several conditional statements are used in the listing 13.2. It should also be noted that abc BASIC makes a short
circuit for logical calculations. That is, if an AND statement results FALSE in the first argument, or an OR statement
results TRUE in the first argument, then all the following arguments are no longer evaluated. This behavior can
be seen in the listing 13.1

1 <ABC>
2 PRINT "J"
3 PRINT "S 0, 0, 68, 71, 100"
4 PRINT "H 100, 0"
5 PRINT "O R"
6

7 REM If the first element of an AND condition is false,
8 REM the second element won't be evaluated (logical shortcut).
9 PRINT "T 5, 30, 0, 3, 4;[J:c90]FALSE AND FALSE: ";

10 IF (falsch("with") AND falsch("out")) THEN
11 PRINT "** Oh no! **"; // This should never become visible ...
12 ENDIF
13 PRINT " short circuit"
14

15 REM The same happens to OR conditions,
16 REM if the first part is true.
17 PRINT "T 5, 40, 0, 3, 4;[J:c90]TRUE OR TRUE: ";
18 IF (richtig("with") OR richtig("out")) THEN
19 PRINT " short circuit"
20 ENDIF
21

22 PRINT "A 1"
23

24 REM Subroutines has to be encapsulated in SUB name(arguments) ... END SUB
25 SUB falsch(text$)
26 PRINT text$; // print the given text towards JScript
27 RETURN FALSE // and return FALSE for the logic evaluation
28 END SUB
29

30 SUB richtig(text$)
31 PRINT text$; // print the given text towards JScript
32 RETURN TRUE // and return TRUE for the logic evaluation
33 END SUB
34 </ABC>

Listing 13.1: abc is using logical shortcuts

13.5.2 GOTO and GOSUB

You can also jump within a program. The GOTO command jumps to the position with a matching LABEL com-
mand, while the GOSUB command remembers the current position in the program and jumps back there when
theprogramhits theRETURNcommand. Bothcanbe seen in theabcprogram in listing13.2.

<ABC>
PRINT "J"
PRINT "S 0, 0, 68, 71, 100"
PRINT "H 100, 0"
PRINT "O R"

REM If the first element of an AND condition is false,
REM the second element won't be evaluated (logical shortcut).
PRINT "T 5, 30, 0, 3, 4;[J:c90]FALSE AND FALSE: ";
IF (falsch("with") AND falsch("out")) THEN
 PRINT "** Oh no! **"; // This should never become visible ...
ENDIF
PRINT " short circuit"

REM The same happens to OR conditions,
REM if the first part is true.
PRINT "T 5, 40, 0, 3, 4;[J:c90]TRUE OR TRUE: ";
IF (richtig("with") OR richtig("out")) THEN
 PRINT " short circuit"
ENDIF

PRINT "A 1"

REM Subroutines has to be encapsulated in SUB name(arguments) ... END SUB
SUB falsch(text$)
 PRINT text$; // print the given text towards JScript
 RETURN FALSE // and return FALSE for the logic evaluation
END SUB

SUB richtig(text$)
 PRINT text$; // print the given text towards JScript
 RETURN TRUE // and return TRUE for the logic evaluation
END SUB
</ABC>

13 Advanced BASIC Compiler 103

1 <ABC>
2 OPEN #1, "/DEV/RAWIP", "r"
3 OPEN #2, "/DEV/RAWIP", "w"
4

5 DO
6 LINE INPUT #1 Eingabe$
7 IF (Eingabe$ = "exit") BREAK
8 GOSUB Antworte
9 LOOP

10

11 GOTO goodbye
12

13 LABEL Antworte
14 IF (Eingabe$ = "time") THEN
15 PRINT #2 TIME$
16 RETURN
17 ELSIF (Eingabe$ = "date") THEN
18 PRINT #2 DATE$
19 RETURN
20 ELSIF (Eingabe$ = "random") THEN
21 PRINT #2 STR$(RAN(100))
22 RETURN
23 ELSE
24 PRINT #2 "syntax error: ", Eingabe$
25 RETURN
26 ENDIF
27

28 LABEL goodbye
29 PRINT #2 "goodbye"
30 CLOSE #1
31 CLOSE #2
32 END
33 </ABC>

Listing 13.2: Conditional instructions and jumps. If you want to test the program, you need to start a Telnet session on port 9100 of the
printer.

13.6 Loops

In BASIC there are various forms to repeat a code specifically. Implemented in the printer is a FOR/NEXT,DO/LOOP,
WHILE/WEND und REPEAT/UNTIL loop construction.

13.6.1 FOR Variable = start TO end STEP stepping . . . NEXT

This example will print four labels with a serial number (listing 13.3)

You can exchange the example by this abc program (listing 13.4).

<ABC>
OPEN #1, "/DEV/RAWIP", "r"
OPEN #2, "/DEV/RAWIP", "w"

DO
 LINE INPUT #1 Eingabe$
 IF (Eingabe$ = "exit") BREAK
 GOSUB Antworte
LOOP

GOTO goodbye

LABEL Antworte
IF (Eingabe$ = "time") THEN
 PRINT #2 TIME$
 RETURN
ELSIF (Eingabe$ = "date") THEN
 PRINT #2 DATE$
 RETURN
ELSIF (Eingabe$ = "random") THEN
 PRINT #2 STR$(RAN(100))
 RETURN
ELSE
 PRINT #2 "syntax error: ", Eingabe$
 RETURN
ENDIF

LABEL goodbye
PRINT #2 "goodbye"
CLOSE #1
CLOSE #2
END
</ABC>

104 13 Advanced BASIC Compiler

1 m m
2 J
3 S l1;0,0,68,71,100
4 H 150,0
5 O R
6 T 40,40,0,5,20;[SER:1]
7 A 4

Listing 13.3: A label containing a serial number

1 <ABC>
2 PRINT "m m"
3 FOR i = 1 TO 4 STEP 1
4 PRINT "J"
5 PRINT "S l1; 0, 0, 68, 71, 100"
6 PRINT "H 150, 0"
7 PRINT "O R"
8 PRINT "T 40, 40, 0, 5, 20;" + STR$(i)
9 PRINT "A 1"

10 NEXT
11 </ABC>

Listing 13.4: abc creates a serial number with a loop

A FOR loopmust be completed with the NEXT command. The loop variable is first assigned to the start value. The
code between FOR andNEXT is repeated until the variable reaches the final value. The STEP command is optional
and specifies the increment. If you omit STEP, abc counts up with 1. Negative values count down. If the end value
is exceeded, the loop content will no longer be executed, see also the listing 13.5.

Figure 13.1: Result of the FOR/NEXT loops in listing 13.5

m m
J
S l1;0,0,68,71,100
H 150,0
O R
T 40,40,0,5,20;[SER:1]
A 4

<ABC>
PRINT "m m"
FOR i = 1 TO 4 STEP 1
 PRINT "J"
 PRINT "S l1; 0, 0, 68, 71, 100"
 PRINT "H 150, 0"
 PRINT "O R"
 PRINT "T 40, 40, 0, 5, 20;" + STR$(i)
 PRINT "A 1"
NEXT
</ABC>

13 Advanced BASIC Compiler 105

1 <ABC>
2 PRINT "m m"
3 PRINT "J"
4 PRINT "S l1; 0, 0, 68, 71, 100"
5 PRINT "H 150, 0"
6 PRINT "O R"
7

8 PRINT "T 10, 15, 0, 5, 4;[J:c80]JScript Zahlenreihen aus abc generiert"
9 PRINT "G 10, 17, 0;L: 80, 0.75"

10

11 REM some examples using different steppings
12 PRINT "T 10, 25, 0, 3, 8;";
13 FOR i = 1 TO 10
14 PRINT i;
15 NEXT
16 PRINT
17

18 PRINT "T 10, 34, 0, 3, 8;";
19 FOR i = 1 TO 10 STEP 2
20 PRINT i;
21 NEXT
22 PRINT
23

24 PRINT "T 10, 43, 0, 3, 8;";
25 FOR i = 10 TO 1 STEP -1
26 PRINT i;
27 NEXT
28 PRINT
29

30 PRINT "T 10, 52, 0, 3, 8;";
31 FOR i = 10 TO 1 STEP -2
32 PRINT i;
33 NEXT
34 PRINT
35

36 PRINT "A 1"
37 END
38 </ABC>

Listing 13.5: Some FOR/NEXT loops, keep an eye on the semicolon at the end of a PRINT command.

<ABC>
PRINT "m m"
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 150, 0"
PRINT "O R"

PRINT "T 10, 15, 0, 5, 4;[J:c80]JScript Zahlenreihen aus abc generiert"
PRINT "G 10, 17, 0;L: 80, 0.75"

REM some examples using different steppings
PRINT "T 10, 25, 0, 3, 8;";
FOR i = 1 TO 10
	PRINT i;
NEXT
PRINT

PRINT "T 10, 34, 0, 3, 8;";
FOR i = 1 TO 10 STEP 2
	PRINT i;
NEXT
PRINT

PRINT "T 10, 43, 0, 3, 8;";
FOR i = 10 TO 1 STEP -1
	PRINT i;
NEXT
PRINT

PRINT "T 10, 52, 0, 3, 8;";
FOR i = 10 TO 1 STEP -2
	PRINT i;
NEXT
PRINT

PRINT "A 1"
END
</ABC>

106 13 Advanced BASIC Compiler

13.6.2 DO . . . LOOP

In aDO/LOOP loop the code is repeatedendlesslywithin the loop. You can, however, breakout of the loopwith the
BREAKcommand. abcwill continuewith thecodeafter theLOOPcommand inaBREAKcommand.

A continuous loop without end shows listing 13.6 (by pressing the red Cancel key on the display or pressing
Cancel on the Navigator Pad for at least three seconds on older printers, an abc program can be terminated at
any time).

1 <ABC>
2 OPEN #1,"/DEV/RS232","w"
3 OPEN #2,"/DEV/RAWIP","r"
4

5 DO
6 x = PEEK(#2)
7 IF (x <> -1) POKE #1,x
8 LOOP
9 </ABC>

Listing 13.6: Redirect the IP interface to the RS232 interface

13.6.3 WHILE (condition) . . . WEND

After theWHILE command a conditionmust be specified. This is similar to the IF command, except that the condi-
tion is directly followed by the loop block, without another commandword like THEN or DO.When the loop block
is finished, theWEND command is used to inform the compiler of the end of the loop.

With a WHILE loop, it is also possible that the loop block is not executed at all if the condition already re-
sults in FALSE during the first check. As long as the condition results in TRUE the loop is executed repeatedly.
An example is reading files line by line. If a file has no content, then nothing is processed, as seen in list-
ing 13.7.

13.6.4 REPEAT . . . UNTIL (condition)

If a loop is to be run through at least once, the REPEAT UNTIL loop can be used to check the condition only after
a loop has been run through. However, the loop is executed again if the condition results in FALSE. Such a loop
can also be found in the listing 13.7. The two commands MOUSEX and MOUSEY return the numeric value -1 if the
display is not touched or the respective position if the display is touched.

Both theWHILE and the REPEAT loop can be replacedwith a suitably designedDO loop if the IF (condition) BREAK
command is used in it to exit from the repetition.

<ABC>
OPEN #1,"/DEV/RS232","w"
OPEN #2,"/DEV/RAWIP","r"

DO
 x = PEEK(#2)
 IF (x <> -1) POKE #1,x
LOOP
</ABC>

13 Advanced BASIC Compiler 107

1 <ABC>
2 REM This program has to be started from
3 REM the printer's default storage memory!
4 OPEN #1,"/card/labels/WHILE.lbl","r"
5 OPEN WINDOW 272, 480
6 y = 0
7 POKE "lcd", 1
8

9 WHILE (NOT EOF(#1))
10 LINE INPUT #1 Zeile$
11 TEXT 0,y,Zeile$
12 y = y + 12
13 WEND
14

15 TEXT 65, 460, "*** PLEASE TOUCH ME! ***"
16

17 REPEAT
18 PAUSE 0.1
19 UNTIL (MOUSEX > -1)
20

21 POKE "lcd", 0
22 CLOSE WINDOW
23 </ABC>

Listing 13.7: A file reads itself and shows up on the display of a SQUIX or EOS printer. The command EOF(#1) indicates whether the end
of the file has been reached.

13.7 Subroutines by SUB name(arguments) . . . END SUB

When BASIC was invented, Structured Programming with encapsulated routines had not yet been thought of.
At that time BASIC was invented as a pure imperative programming language. Later, various dialects of the
language introduced structured programming through concepts such as encapsulated subroutines. This also
applies to abc. Also when programming cab printers you can define functions and call them in the program
using the function name followed by arguments in round brackets. A function can, but does not have to return a
value. The return from a function is done by the RETURN command, as with the GOSUB command. You can let
RETURN be followed by another value. This is then used as the function return value.

Note, however, that each variable is also defined globally within a subroutine. If you want to encapsulate a
variable in a function, you have to declare it once with the prefixed keyword LOCAL before using it. A variable
declared this way within a subroutine is not available outside the subroutine. If the subroutine is terminated, all
local variables are removed from the RAM again. If you want to keep a variable value over several calls, you must
use the STATIC keyword. Variables declared with STATIC are automatically also local variables, i.e. they are not
accessible outside the subroutine.

How locally declared variables leave the global variables untouched can be seen in the listing 13.8. If you use
subroutines, always make sure to declare all variables with LOCAL or STATIC. BASIC (and therefore abc) does not
pay attention to this detail. Otherwise you will get an error like in listing 13.9.

<ABC>
REM This program has to be started from
REM the printer's default storage memory!
OPEN #1,"/card/labels/WHILE.lbl","r"
OPEN WINDOW 272, 480
y = 0
POKE "lcd", 1

WHILE (NOT EOF(#1))
 LINE INPUT #1 Zeile$
 TEXT 0,y,Zeile$
 y = y + 12
WEND

TEXT 65, 460, "*** PLEASE TOUCH ME! ***"

REPEAT
 PAUSE 0.1
UNTIL (MOUSEX > -1)

POKE "lcd", 0
CLOSE WINDOW
</ABC>

https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Imperative_programming

108 13 Advanced BASIC Compiler

1 <ABC>
2 REM global variables
3 a = 1
4 b = 2
5 c = 3
6

7 Test(a, b)
8

9 REM all variables inside the subroutine are local
10 SUB Test(b, c)
11 LOCAL a
12 a = 30
13 b = 40
14 c = 50
15 END SUB
16

17 PRINT "J"
18 PRINT "S l1; 0, 0, 68, 71, 100"
19 PRINT "H 100, 0"
20 PRINT "O R"
21 PRINT "T 10, 65, 0, 3, 20;", a, b, c
22 PRINT "A 1"
23 </ABC>

Listing 13.8: Variables that have been declared with LOCAL or passed as arguments are local in a subroutine, the output on the label is
“1 2 3”.

Figure 13.2: The listing 13.9 should originally produce ten rows with the numbers from 1 to 10. But four rows are missing, because the
global variable “i” is changed in the subroutine.

<ABC>
REM global variables
a = 1
b = 2
c = 3

Test(a, b)

REM all variables inside the subroutine are local
SUB Test(b, c)
 LOCAL a
 a = 30
 b = 40
 c = 50
END SUB

PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 100, 0"
PRINT "O R"
PRINT "T 10, 65, 0, 3, 20;", a, b, c
PRINT "A 1"
</ABC>

13 Advanced BASIC Compiler 109

1 <ABC>
2 PRINT "J"
3 PRINT "S l1; 0, 0, 68, 71, 100"
4 PRINT "H 100, 0"
5 PRINT "O R"
6

7 REM The first five rows are counted upwards by the global variable "y"
8 FOR y = 1 TO 5
9 Zahlenreihe(y, 10)

10 NEXT
11

12 REM division line on the label
13 PRINT "G 5, 31, 0;L:80,0.5"
14

15 REM "i" is used globally for the last five rows (underneath the division line)
16 FOR i = 1 TO 5
17 Zahlenreihe(i, 30)
18 NEXT
19

20 PRINT "A 1"
21

22 SUB Zahlenreihe(a, b)
23 FOR i = 1 TO 10 // ATTENTION: The variable "i" is still used globally!
24 PRINT "T " + STR$(5 * i) + "," + STR$(4 * a + b) + ",0,3,3;" + STR$(i)
25 NEXT
26 END SUB
27 </ABC>

Listing 13.9: Also a counter variable in a FOR/NEXT loop is global within a subroutine. For the exercise change the code so that ten rows
are printed.

The listing 13.10 is based on a lecture about bad programming style and the resulting program errors caused by
it. Here the subroutines access global variables and the names of the passed variables do not match the names
in the SUB(. . .) definition. Who has to deal with such a code has after fewminutes only spaghetti in the brain.
The listing 13.11 solves the same task in a more understandable way, even if the subroutine also accesses the
global array.

<ABC>
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 100, 0"
PRINT "O R"

REM The first five rows are counted upwards by the global variable "y"
FOR y = 1 TO 5
 Zahlenreihe(y, 10)
NEXT

REM division line on the label
PRINT "G 5, 31, 0;L:80,0.5"

REM "i" is used globally for the last five rows (underneath the division line)
FOR i = 1 TO 5
 Zahlenreihe(i, 30)
NEXT

PRINT "A 1"

SUB Zahlenreihe(a, b)
 FOR i = 1 TO 10 // ATTENTION: The variable "i" is still used globally!
 PRINT "T " + STR$(5 * i) + "," + STR$(4 * a + b) + ",0,3,3;" + STR$(i)
 NEXT
END SUB
</ABC>

110 13 Advanced BASIC Compiler

1 <ABC>
2 REM global variables
3 DATA 45, 23, 34, 12
4 READ vinegar, oil, salt, pepper
5

6 SUB Christoph(pepper, salt)
7 IF (salt > pepper) THEN
8 oil = salt
9 vinegar = pepper

10 ENDIF
11 END SUB
12

13 SUB Anton(vinegar, salt)
14 IF (vinegar < salt) THEN
15 oil = vinegar
16 pepper = salt
17 ENDIF
18 END SUB
19

20 SUB Daniela(vinegar, oil)
21 IF (oil > vinegar) THEN
22 pepper = oil
23 salt = vinegar
24 ENDIF
25 END SUB
26

27 SUB Britta(oil, pepper)
28 IF (pepper > oil) THEN
29 salt = pepper
30 vinegar = oil
31 ENDIF
32 END SUB
33

34 REM four people stir a salad
35 Anton(pepper, oil)
36 Britta(salt, vinegar)
37 Christoph(oil, vinegar)
38 Daniela(pepper, salt)
39

40 PRINT "J"
41 PRINT "S l1; 0, 0, 68, 71, 100"
42 PRINT "H 100, 0"
43 PRINT "O R"
44 PRINT "T 10, 35, 0, 3, 10;";
45 IF (oil > salt) THEN
46 PRINT vinegar, salt, oil, pepper
47 ELSE
48 PRINT vinegar, oil, salt, pepper
49 ENDIF
50 PRINT "A 1"
51 </ABC>

Listing 13.10: Change the four numbers in the DATA line and observe the result. Can you explain the program?

<ABC>
REM global variables
DATA 45, 23, 34, 12
READ vinegar, oil, salt, pepper

SUB Christoph(pepper, salt)
IF (salt > pepper) THEN
 oil = salt
 vinegar = pepper
ENDIF
END SUB

SUB Anton(vinegar, salt)
IF (vinegar < salt) THEN
 oil = vinegar
 pepper = salt
ENDIF
END SUB

SUB Daniela(vinegar, oil)
IF (oil > vinegar) THEN
 pepper = oil
 salt = vinegar
ENDIF
END SUB

SUB Britta(oil, pepper)
IF (pepper > oil) THEN
 salt = pepper
 vinegar = oil
ENDIF
END SUB

REM four people stir a salad
Anton(pepper, oil)
Britta(salt, vinegar)
Christoph(oil, vinegar)
Daniela(pepper, salt)

PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 100, 0"
PRINT "O R"
PRINT "T 10, 35, 0, 3, 10;";
IF (oil > salt) THEN
 PRINT vinegar, salt, oil, pepper
ELSE
 PRINT vinegar, oil, salt, pepper
ENDIF
PRINT "A 1"
</ABC>

13 Advanced BASIC Compiler 111

1 <ABC>
2 REM global variables
3 DATA 45, 23, 34, 12
4 DIM Values(4) // four values stored into one global array
5 FOR i = 1 TO 4
6 READ Values(i)
7 NEXT
8

9 REM use a pointer to an array to manipulate a global array
10 SUB sortiere(a(),x,y)
11 LOCAL puffer // this variable exists only during a function call
12 IF (a(x) > a(y)) THEN // swap the two numbers in the related array
13 puffer = a(x)
14 a(x) = a(y)
15 a(y) = puffer
16 ENDIF
17 END SUB
18

19 REM Network Sort over four values
20 sortiere(Values(),1,3)
21 sortiere(Values(),2,4)
22 sortiere(Values(),1,2)
23 sortiere(Values(),3,4)
24 sortiere(Values(),2,3)
25

26 REM The JScript code is equal to the label "Salad.lbl"
27 PRINT "J"
28 PRINT "S l1; 0, 0, 68, 71, 100"
29 PRINT "H 100, 0"
30 PRINT "O R"
31 PRINT "T 10, 35, 0, 3, 10;";
32 FOR i = 1 TO 4
33 PRINT Values(i);
34 NEXT
35 PRINT // Don't forget the line ending character, or JScript will fail!
36 PRINT "A 1"
37 </ABC>

Listing 13.11: Does the same as listing 13.10

13.7.1 Using a pointer to an array as an argument of a subroutine

If one of the arguments passed to a function is an array where the round bracket remains empty, a pointer to
that array is passed to the function. The function then edits the global array under the name used locally in the
function definition. You can use this oddity to create more than one return value. For an example of an abc array
pointer, see listing 13.11.

13.8 String operations

In abc BASIC, a variable can represent a number or a string. Numbers have a simple variable name that must
begin with a letter and can only consist of letters and numbers. A distinction is made between upper case and
lower case. Here in this guide, variable names are always lower case and commands are capitalized. But you

<ABC>
REM global variables
DATA 45, 23, 34, 12
DIM Values(4) // four values stored into one global array
FOR i = 1 TO 4
 READ Values(i)
NEXT

REM use a pointer to an array to manipulate a global array
SUB sortiere(a(),x,y)
LOCAL puffer // this variable exists only during a function call
IF (a(x) > a(y)) THEN // swap the two numbers in the related array
 puffer = a(x)
 a(x) = a(y)
 a(y) = puffer
ENDIF
END SUB

REM Network Sort over four values
sortiere(Values(),1,3)
sortiere(Values(),2,4)
sortiere(Values(),1,2)
sortiere(Values(),3,4)
sortiere(Values(),2,3)

REM The JScript code is equal to the label "Salad.lbl"
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 100, 0"
PRINT "O R"
PRINT "T 10, 35, 0, 3, 10;";
FOR i = 1 TO 4
 PRINT Values(i);
NEXT
PRINT // Don't forget the line ending character, or JScript will fail!
PRINT "A 1"
</ABC>

112 13 Advanced BASIC Compiler

can also use abc commands in lower case. If a variable contains a string, a dollar sign must be appended to the
variable name.

You can also place multiple contents numbered in one variable. Such an entity is called array. The array must be
announced in size before first being used with the DIM command (declaration).

Here is an example (listing 13.12). The TOKEN command breaks down a string into multiple elements and writes
it to an array.

1 <ABC>
2 zahl = 42
3 antwort$ = "We have the solution for every challenge."
4 DIM a$(10)
5 anzahl = TOKEN(antwort$, a$(), " ")
6 IF (a$(4) = "solution") END
7 ERROR "Oh no, that went wrong!"
8 </ABC>

Listing 13.12: A meaningless BASIC program. If the abc symbol disappears from the display of the printer, the program has been
successfully executed. Change line 6 to get the error message from line 7 presented.

13.8.1 num = SPLIT(string$, return_array$(), dividing_character$)

The SPLIT command requires a string to be split as the first argument. Then a pointer to an array must follow
(array name with dollar signs and empty brackets) that allows the SPLIT command to edit the array. The last
argument is expected to be a string with the separator characters.

The SPLIT command copies character by character from the string to the first element of the array. If it reads a
delimiter, it will not be transferred, but it will be switched to the next array element. At the end of the procedure,
you have one array element more than the string contains separator characters. The return value of the SPLIT
command is the number of elements generated in the array. If the array was previously too small with the DIM
command, the SPLIT command corrects the array size to fit it.

13.8.2 num = TOKEN(string$, array$(), separator$)

The TOKEN commandworks like the SPLIT command, but with the difference that no empty strings are created as
elements of the array. So you can’t say that TOKEN creates exactly onemore element in the array than delimiters
exist. For clarity, see listing 13.13.

13.8.3 Handling sub strings with LEFT$, MID$ and RIGHT$

You can cut out a part of a string from it. For this purpose there are the commands LEFT$(string$, number),
RIGHT$(string$, number) and MID$(string$, position, number). If you omit the last parameter in the MID$ com-
mand, the string is returnedor replaced fromtheposition (secondparameter) to theend.

The special thing about this is that you can also reassign parts of a string by using the function on the left side of
an assignment operation. The listing 13.14 shows how to use the MID$ function for a reassignment of a part of a
string. But be careful, the reassignment only works for replacements of equal length!

<ABC>
zahl = 42
antwort$ = "We have the solution for every challenge."
DIM a$(10)
anzahl = TOKEN(antwort$, a$(), " ")
IF (a$(4) = "solution") END
ERROR "Oh no, that went wrong!"
</ABC>

13 Advanced BASIC Compiler 113

Figure 13.3:With SPLIT you get one element more than separators are present in the string. TOKEN, on the other hand, doesn’t create
empty elements (listing 13.13).

Figure 13.4:With the software Packet Sender we send a line to the RAW-IP interface and receive an accordingly manipulated line as
response (listing 13.14).

https://packetsender.com

114 13 Advanced BASIC Compiler

1 <ABC>
2 PRINT "J"
3 PRINT "S l1; 0, 0, 68, 71, 100"
4

5 DIM t$(1)
6 t = TOKEN("good boy", t$(), "o")
7 PRINT "T 10, 25, 0, 3, 5;TOKEN: ";
8 FOR i = 1 TO t
9 PRINT "|" + t$(i) + "| ";

10 NEXT
11 PRINT " = ", t, " Teile"
12

13 DIM s$(1)
14 s = SPLIT("good boy", s$(), "o")
15 PRINT "T 10, 50, 0, 3, 5;SPLIT: ";
16 FOR i = 1 TO s
17 PRINT "|" + s$(i) + "| ";
18 NEXT
19 PRINT " = ", s, " Teile"
20

21 PRINT "A 1"
22 </ABC>

Listing 13.13: For processing a CSV file, it is better to use SPLIT() instead of TOKEN() so that you do not encounter problems with empty
fields.

13.8.4 pos = INSTR(string$, search_pattern$)

Searches for the occurrence of a search pattern in a string and returns the position of the first occurrence. If you
do not want to search from left to right, you can use the RINSTR command. If the pattern is not found, the result
is 0 (numeric zero). If the string starts with the search pattern, the answer is 1.

13.8.5 Sweeping blank spaces at the beginning and end of a string

The TRIM$(a$) command removes all spaces at the beginning and end of the a$ string. If you only want to remove
spaces at the beginning, you have to use the LTRIM$() command, for removing spaces at the end you can use the
RTRIM$() command. In the listing 13.16 this is used to make the constructed “LOAD” commandmore robust. So
you can use any number of spaces between “LOAD” and the file name.

13.8.6 More commands to manipulate strings

There are more commands to process strings. For example, you can use LEN(a$) to get the length of the string
a$. With VAL(number$) you can convert the string number$ into a numeric value. The reverse is possible with
STR$(number). With UPPER(a$) you get a string of uppercase letters, with LOWER(a$) lowercase letters are
generated.

<ABC>
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"

DIM t$(1)
t = TOKEN("good boy", t$(), "o")
PRINT "T 10, 25, 0, 3, 5;TOKEN: ";
FOR i = 1 TO t
 PRINT "|" + t$(i) + "| ";
NEXT
PRINT " = ", t, " Teile"

DIM s$(1)
s = SPLIT("good boy", s$(), "o")
PRINT "T 10, 50, 0, 3, 5;SPLIT: ";
FOR i = 1 TO s
 PRINT "|" + s$(i) + "| ";
NEXT
PRINT " = ", s, " Teile"

PRINT "A 1"
</ABC>

13 Advanced BASIC Compiler 115

1 <ABC>
2 OPEN #1, "/DEV/RAWIP", "r"
3 OPEN #2, "/DEV/RAWIP", "w"
4

5 REPEAT
6 LINE INPUT #1 Text$
7

8 REM we replace animal products with healthier alternatives (fruit salad)
9 pos = INSTR(Text$, "Schnitzel")

10 WHILE (pos > 0)
11 MID$(Text$, pos, 9) = "Obstsalat"
12 pos = INSTR(Text$, "Schnitzel")
13 WEND
14

15 PRINT #2 Text$
16 UNTIL (Text$ = "ende")
17 </ABC>

Listing 13.14: Send a line to the RAW-IP interface and look at the answer

13.9 Read and write on the interfaces

In abc you can use the command OPEN to read or write from the following interfaces:

• /dev/rs232:baud,handshake
• /dev/usb
• /dev/rawip
• /dev/lpr
• /dev/panel
• /dev/keyboard
• /dev/jscript
• /card/filename.ext
• /iffs/name.ext
• mailto:address

We are looking at an example which is often sent to a cab printer for diagnostic purposes (you already know it as
the 13.6 listing on page 106). It reads all incoming characters from /dev/rawip and sends them to /dev/rs232. So
you can listen to the IP interface on the RS232 interface. If you swap the two interfaces, you can also use a cab
printer to listen to an RS232 connection in the same way. If you mix the two, you can use the printer to access an
RS232 interface via port 9100 (listing 13.15).

<ABC>
OPEN #1, "/DEV/RAWIP", "r"
OPEN #2, "/DEV/RAWIP", "w"

REPEAT
 LINE INPUT #1 Text$

 REM we replace animal products with healthier alternatives (fruit salad)
 pos = INSTR(Text$, "Schnitzel")
 WHILE (pos > 0)
 MID$(Text$, pos, 9) = "Obstsalat"
 pos = INSTR(Text$, "Schnitzel")
 WEND

 PRINT #2 Text$
UNTIL (Text$ = "ende")
</ABC>

116 13 Advanced BASIC Compiler

1 <ABC>
2 REM from IP interface to RS232
3 OPEN #1,"/DEV/RAWIP","r"
4 OPEN #2,"/DEV/RS232","w"
5

6 REM and vice versa
7 OPEN #3,"/DEV/RS232","r"
8 OPEN #4,"/DEV/RAWIP","w"
9

10 DO
11 // IP --> RS232
12 x = PEEK(#1)
13 IF (x <> -1) POKE #2,x
14 // RS232 --> IP
15 x = PEEK(#3)
16 IF (x <> -1) POKE #4,x
17 LOOP
18 </ABC>

Listing 13.15: Using a cab printer as a bridge between RS232 and ethernet. Probably clever, if you want to access a RS232
connected machine for diagnostics at a factory hall, where your modern laptop no longer have an interface to RS232.

13.10 Creating a parser

Sometimes a printer has to be integrated into an existing system that uses a completely different syntax than
JScript and whose rebuilding is not possible or only possible with great effort. Here we want to think of an
alternative dialect as an example. There are only four rules:

1. Each command has it’s own line of code.
2. If the line starts with LOAD, a filename has to follow.
3. Filling fields (variables) by using the equation sign.
4. If a line starts with PRINT, the number of labels has to follow.

We will open the RAW IP interface and listen to the incoming data. If we can convert the incoming code, we send
it as JScript code with abc’s PRINT command.

<ABC>
REM from IP interface to RS232
OPEN #1,"/DEV/RAWIP","r"
OPEN #2,"/DEV/RS232","w"

REM and vice versa
OPEN #3,"/DEV/RS232","r"
OPEN #4,"/DEV/RAWIP","w"

DO
 // IP --> RS232
 x = PEEK(#1)
 IF (x <> -1) POKE #2,x
 // RS232 --> IP
 x = PEEK(#3)
 IF (x <> -1) POKE #4,x
LOOP
</ABC>

13 Advanced BASIC Compiler 117

1 <ABC>
2 OPEN #1, "/dev/rawip", "r"
3

4 DO
5 LINE INPUT #1 Zeile$
6

7 REM load layout
8 IF (UPPER$(LEFT$(Zeile$, 5)) = "LOAD ") THEN
9 PRINT "M l LBL;" + TRIM$(MID$(Zeile$, 6))

10 ENDIF
11

12 REM replace field values
13 pos = INSTR(Zeile$, "=")
14 IF (pos > 0) THEN
15 PRINT "R " + LEFT$(Zeile$, pos-1) + ";" + MID$(Zeile$, pos+1)
16 ENDIF
17

18 REM print the right among of labels
19 IF (UPPER$(LEFT$(Zeile$, 6)) = "PRINT ") THEN
20 PRINT "A " + MID$(Zeile$, 7)
21 ENDIF
22 LOOP
23 </ABC>

Listing 13.16: Parsing an unknown stream of data using BASIC logic.

1 LOAD LayoutVorlage
2 PARTNO=5977008
3 PROD=SQUIX 4/600MP
4 RESOL=600 dpi
5 SERNR=164162038304
6 PRINT 1

Listing 13.17: Thanks to the parser we can send this code directly to the printer.

13.11 Writing onto the graphical display

The printer display can also be used by abc. For this purpose, a suitable part of the RAMmust first be reserved,
which is done with the command OPENWINDOW. The arguments of the command are the number of pixels in X
and Y direction. With a SQUIX we control a 272 x 480 pixel display.

After that the bitmap can be edited in memory until we delete it from RAM with CLOSE WINDOW. The command
POKE “lcd” switches between the display of the standard controls and the abc bitmap, 1 is for the bitmap, with 0
the controls are displayed again.

You can only write into the bitmap. After creation it is completely filled in white. With the command POKE “bcolor”
a background color can be defined. But only as an index from 0 (always black) to 255 (always white). Which color
is hidden behind the index can be defined with the POKE “color#num”, where for num a number from 1 to 254 is
allowed.

The listing 13.18 shows the commands for graphical output with abc.

<ABC>
OPEN #1, "/dev/rawip", "r"

DO
 LINE INPUT #1 Zeile$

 REM load layout
 IF (UPPER$(LEFT$(Zeile$, 5)) = "LOAD ") THEN
 PRINT "M l LBL;" + TRIM$(MID$(Zeile$, 6))
 ENDIF

 REM replace field values
 pos = INSTR(Zeile$, "=")
 IF (pos > 0) THEN
 PRINT "R " + LEFT$(Zeile$, pos-1) + ";" + MID$(Zeile$, pos+1)
 ENDIF

 REM print the right among of labels
 IF (UPPER$(LEFT$(Zeile$, 6)) = "PRINT ") THEN
 PRINT "A " + MID$(Zeile$, 7)
 ENDIF
LOOP
</ABC>

LOAD LayoutVorlage
PARTNO=5977008
PROD=SQUIX 4/600MP
RESOL=600 dpi
SERNR=164162038304
PRINT 1

118 13 Advanced BASIC Compiler

The command TEXT can be used to output a text at the coordinates X, Y. In contrast to JScript, the upper left
corner is used here, not the baseline. With the FONT command you can select a font, e.g. “Swiss” or “Swiss
Bold”, followed by the height in display pixels. If a TrueType font is to be used, it must be located in the printer’s
RAM. Since there is no font load command, we leave this task to JScript, as shown in the example of the 13.18
listing.

1 <ABC>
2 REM Let JScript load the font Indie Flower into RAM
3 PRINT "M l FNT;IndieFlower-Regular"
4

5 REM Assign a part of the RAM for a bitmap of the printer screen
6 OPEN WINDOW 272, 480
7

8 REM background color set to black
9 POKE "bcolor", 1

10

11 REM Fill the bitmap completely with background color
12 CLEAR WINDOW
13

14 REM switch from printer's status display to abc's bitmap
15 POKE "lcd", 1
16

17 REM Set the font to be used (font name, height in pixel)
18 FONT "Indie Flower,25"
19

20 REM define a random color and write some text onto the screen
21 FOR x = 1 TO 5
22 POKE "color#1", RAN(DEC("FFFFFF")) // generate random color (RGB hex value),
23 POKE "bcolor", 1 // assign to color no. 1
24 CLEAR WINDOW // and wipe the screen with the new color
25 FOR y = 1 TO 25
26 POKE "color#1", RAN(DEC("FFFFFF")) // change color again randomly
27 POKE "fcolor", 1 // assign new color to index 1
28 TEXT RAN(120), RAN(455), "colorful dreams" // randomly position your text
29 NEXT
30 PAUSE 2 // a break of 2 seconds before we end
31 NEXT
32

33 REM clean up everything
34 POKE "lcd", 0 // first we switch back to the printer's status display,
35 CLOSE WINDOW // then we purge the bitmap out of the RAM
36 </ABC>

Listing 13.18: abc can overtake the printer’s display

13.11.1 Example abc program: global climate warming up

As another example, the listing 13.19 will show a parser that uses values from the already known CSV file from
the practical example on page 99 (section 12.3).

These are annual mean temperatures from 1881 to today, published by the GermanWeather Service (the file
“regional_averages_tm_year.txt” must be placed in the /misc sub directory of the printer and the file extension
must be changed to .csv):

<ABC>
REM Let JScript load the font Indie Flower into RAM
PRINT "M l FNT;IndieFlower-Regular"

REM Assign a part of the RAM for a bitmap of the printer screen
OPEN WINDOW 272, 480

REM background color set to black
POKE "bcolor", 1

REM Fill the bitmap completely with background color
CLEAR WINDOW

REM switch from printer's status display to abc's bitmap
POKE "lcd", 1

REM Set the font to be used (font name, height in pixel)
FONT "Indie Flower,25"

REM define a random color and write some text onto the screen
FOR x = 1 TO 5
 POKE "color#1", RAN(DEC("FFFFFF")) // generate random color (RGB hex value),
 POKE "bcolor", 1 // assign to color no. 1
 CLEAR WINDOW // and wipe the screen with the new color
 FOR y = 1 TO 25
 POKE "color#1", RAN(DEC("FFFFFF")) // change color again randomly
 POKE "fcolor", 1 // assign new color to index 1
 TEXT RAN(120), RAN(455), "colorful dreams" // randomly position your text
 NEXT
 PAUSE 2 // a break of 2 seconds before we end
NEXT

REM clean up everything
POKE "lcd", 0 // first we switch back to the printer's status display,
CLOSE WINDOW // then we purge the bitmap out of the RAM
</ABC>

13 Advanced BASIC Compiler 119

https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/
air_temperature_mean/

The abc program uses the possibility to show a bitmap not only as a display on the printer’s screen, but also to
transfer it to a JScript graphic in the RAM via the WINDOW TRANSFER command. JScript can then easily transfer
the bitmap into a label using the I command (Image). However, you should note that within the abc bitmap, the
coordinate system starts in the upper left corner and positive X values point to the right and positive Y values
point to the bottom.

You could use PEEK(“resolution”) to determine the printer resolution and create the usable pixels or a conversion
factor for millimeters yourself. Here, however, it is only about a temperature trend without any scale. The focus
is on the possibility to create a graphic in abc and use it in JScript.

On the other hand the example shows how to create a selection list in abc and display it in JScript. You get a value
back using the JGET$/JPUT combination. Since you use the special function SELECT, you have to finish the label
with A [PREVIEW] without printing it, otherwise the selection will not be displayed.

After that you have to rebuild the label. In the first label, which is not to be printed, the size was intentionally
chosen small to show that an S command is required, but the exact dimensions are irrelevant if you only need
the result of a screen dialog.

1 <ABC>
2 OPEN #1, "regional-averages-tm-year.csv", "r"
3

4 REM The first line contains only remarks and is skipped
5 LINE INPUT #1 Zeile$
6

7 REM We create a fictitious label to fetch a value from JScript
8 DIM Bundesland$(1)
9 LINE INPUT #1 Zeile$

10 Anzahl = SPLIT(Zeile$, Bundesland$(), ";")
11

12 PRINT "e IMG;*"
13 PRINT "J"
14 PRINT "S 0, 0, 10, 11, 12"
15 PRINT "T:Laender; 0, 0, 0, 3, 3;[I]";
16

17 FOR i = 3 TO Anzahl
18 PRINT Bundesland$(i) + "[U:GS]";
19 NEXT
20 PRINT
21

22 PRINT "T:LandNr; 0, 0, 0, 3, 3;[I][SELECT:Wähle ein Land aus,Laender,3,1]"
23 PRINT "T 0, 0, 0, 3, 3;[I][ABC:LandNr]"
24 PRINT "A [PREVIEW]"
25

26 REM Now follows to usual JGET$ --> JPUT query
27 REPEAT
28 J$ = JGET$
29 UNTIL (J$ <> "")
30 JPUT(J$)
31

32 REM skip the first two rows
33 Auswahl = VAL(J$) + 2
34

35 REM Create a WINDOW object and edit it graphically from the data
36 OPEN WINDOW 800, 600

https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/air_temperature_mean/
https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/air_temperature_mean/

120 13 Advanced BASIC Compiler

37 DIM Werte$(1)
38 NEW CURVE
39 DO
40 LINE INPUT #1 Zeile$
41 Anzahl = SPLIT(Zeile$, Werte$(), ";")
42 IF (Anzahl < Auswahl) BREAK
43 REM The coordinate origin is at the top left
44 x = (VAL(Werte$(1)) - 1880) * 5
45 y = 600 - VAL(TRIM$(Werte$(Auswahl))) * 50
46 LINE TO x, y
47 LOOP
48

49 REM Store it directly into RAM as a JScript image
50 WINDOW TRANSFER TO "Temperaturen"
51 CLOSE WINDOW
52

53 REM Finally print the actual label
54 PRINT "J"
55 PRINT "S l1; 0, 0, 68, 71, 100"
56 PRINT "H 50, 0"
57 PRINT "O S"
58 PRINT "T 5, 10, 0, 3, 5;" + Bundesland$(Auswahl)
59

60 PRINT "I 5, 15, 0;Temperaturen"
61 PRINT "A 1"
62

63 CLOSE #1
64 </ABC>

Listing 13.19: This selection dialog can only be performed on the newer printers with an X4 motherboard. It has only become possible
with the touch display and its user interface.

13.11.2 Rectangles and lines on the display

It is relatively easy to draw a rectangle. To do this, use the RECT command, followed by the coordinates of two
opposite corners of the rectangle.

RECT x1, y1, x2, y2

As a result, a rectangle is drawn. You can’t influence the pen width, it’s always one pixel wide. The rectangle can
be filled out. Preceding the FILL command fills it with the foreground color, CLEAR fills it with the background
color.

If a line is to be drawn instead of a rectangle, it must be initiated with the NEW CURVE command. The individual
points of the line strokes are then defined with LINE TO x, y Unlike Yabasic, however, abc BASIC does not have a
CLOSE CURVE command. You must return to the first point by yourself, and you cannot fill the resulting surface.
The CIRCLE and TRIANGLE commands are also not available.

The use of the RECT and LINE TO commands shows listing 13.20.

<ABC>
OPEN #1, "regional-averages-tm-year.csv", "r"

REM The first line contains only remarks and is skipped
LINE INPUT #1 Zeile$

REM We create a fictitious label to fetch a value from JScript
DIM Bundesland$(1)
LINE INPUT #1 Zeile$
Anzahl = SPLIT(Zeile$, Bundesland$(), ";")

PRINT "e IMG;*"
PRINT "J"
PRINT "S 0, 0, 10, 11, 12"
PRINT "T:Laender; 0, 0, 0, 3, 3;[I]";

FOR i = 3 TO Anzahl
 PRINT Bundesland$(i) + "[U:GS]";
NEXT
PRINT

PRINT "T:LandNr; 0, 0, 0, 3, 3;[I][SELECT:Wähle ein Land aus,Laender,3,1]"
PRINT "T 0, 0, 0, 3, 3;[I][ABC:LandNr]"
PRINT "A [PREVIEW]"

REM Now follows to usual JGET$ --> JPUT query
REPEAT
 J$ = JGET$
UNTIL (J$ <> "")
JPUT(J$)

REM skip the first two rows
Auswahl = VAL(J$) + 2

REM Create a WINDOW object and edit it graphically from the data
OPEN WINDOW 800, 600
DIM Werte$(1)
NEW CURVE
DO
 LINE INPUT #1 Zeile$
 Anzahl = SPLIT(Zeile$, Werte$(), ";")
 IF (Anzahl < Auswahl) BREAK
 REM The coordinate origin is at the top left
 x = (VAL(Werte$(1)) - 1880) * 5
 y = 600 - VAL(TRIM$(Werte$(Auswahl))) * 50
 LINE TO x, y
LOOP

REM Store it directly into RAM as a JScript image
WINDOW TRANSFER TO "Temperaturen"
CLOSE WINDOW

REM Finally print the actual label
PRINT "J"
PRINT "S l1; 0, 0, 68, 71, 100"
PRINT "H 50, 0"
PRINT "O S"
PRINT "T 5, 10, 0, 3, 5;" + Bundesland$(Auswahl)

PRINT "I 5, 15, 0;Temperaturen"
PRINT "A 1"

CLOSE #1
</ABC>

13 Advanced BASIC Compiler 121

Figure 13.5: The listing 13.20 creates five buildings on the display and waits for a touch input.

122 13 Advanced BASIC Compiler

1 <ABC>
2 OPEN WINDOW 272, 480
3 POKE "bcolor", 0 // 0 = black, 255 = white
4 CLEAR WINDOW
5 POKE "lcd", 1
6

7 FOR wdh = 1 TO 5
8 REM By default all colors are grayscaled
9 POKE "fcolor", 100 + RAN(155)

10 Hausbau(RAN(200), RAN(380))
11 NEXT
12

13 POKE "fcolor", 200
14 FONT "Swiss721,25"
15 TEXT 10, 440, "Touch display to quit!"
16 REPEAT PAUSE 0.02 UNTIL (MOUSEX>-1)
17 POKE "lcd", 0
18 CLOSE WINDOW
19 END
20

21 REM House outline
22 DATA 15, 0, 30, 20, 70, 20, 50, 0, 15, 0, 0, 20, 0, 50, 70, 50, 70, 20, 30, 20, 30, 50
23

24 SUB Hausbau(xrel, yrel)
25 REM clean up space for drawing one house
26 CLEAR FILL RECT xrel, yrel, xrel + 70, yrel + 50
27 REM draw the outline of one house
28 NEW CURVE
29 RESTORE
30 FOR i = 1 TO 11
31 READ x, y
32 LINE TO x + xrel, y + yrel
33 NEXT
34 REM draw door and window
35 FILL RECT xrel + 10, yrel + 50, xrel + 20, yrel + 30
36 FILL RECT xrel + 40, yrel + 40, xrel + 60, yrel + 30
37 END SUB
38 </ABC>

Listing 13.20: Drawing five buildings on the screen

13.11.3 Example: a transparent onscreen logo

If you have a graphic in PNG format that has transparency information (an alpha channel), an X4 printer (SQUIX
or newer) can process this transparency. We will look at this in an example. The listing 13.21 loads two graphics
into the abc window (lines 4 and 5). Actually row 5 would overwrite the graphic from row 4, but the file has a
transparency, so both will mix in the display.

The rest of the program is relatively simple, it opens the RAW-IP interface for reading, and everything sent to
this interface is output to the display instead of being processed by the JScript interpreter. So it’s a kind of
monitor mode without labels to print on. If the text reaches the bottom of the display, the display is erased
again and reassembled from the two graphics. The incoming text is displayed line by line starting from the top
again.

<ABC>
OPEN WINDOW 272, 480
POKE "bcolor", 0 // 0 = black, 255 = white
CLEAR WINDOW
POKE "lcd", 1

FOR wdh = 1 TO 5
 REM By default all colors are grayscaled
 POKE "fcolor", 100 + RAN(155)
 Hausbau(RAN(200), RAN(380))
NEXT

POKE "fcolor", 200
FONT "Swiss721,25"
TEXT 10, 440, "Touch display to quit!"
REPEAT PAUSE 0.02 UNTIL (MOUSEX>-1)
POKE "lcd", 0
CLOSE WINDOW
END

REM House outline
DATA 15, 0, 30, 20, 70, 20, 50, 0, 15, 0, 0, 20, 0, 50, 70, 50, 70, 20, 30, 20, 30, 50

SUB Hausbau(xrel, yrel)
 REM clean up space for drawing one house
 CLEAR FILL RECT xrel, yrel, xrel + 70, yrel + 50
 REM draw the outline of one house
 NEW CURVE
 RESTORE
 FOR i = 1 TO 11
 READ x, y
 LINE TO x + xrel, y + yrel
 NEXT
 REM draw door and window
 FILL RECT xrel + 10, yrel + 50, xrel + 20, yrel + 30
 FILL RECT xrel + 40, yrel + 40, xrel + 60, yrel + 30
END SUB
</ABC>

13 Advanced BASIC Compiler 123

Figure 13.6: The stethoscope merges with the background using transparency (listing 13.21)

Interesting about listing 13.21 is also line 8. The POKE command causes the abc window to appear on the display,
36 pixels down. This keeps the upper toolbar visible (see figure 13.6). Besides the vertical offset lcdy there is also
lcdx available for a horizontal offset.

124 13 Advanced BASIC Compiler

1 <ABC>
2 REM abc window with transparent background logo
3 OPEN WINDOW 272,444
4 WINDOW READ FROM "SQUIX-background"
5 WINDOW READ FROM "Stethoskop"
6 FONT "Monospace,16"
7 POKE "fcolor", 255
8 POKE "lcdy", 36
9 POKE "lcd", 1

10

11 REM listen to input stream
12 OPEN #1, "/dev/rawip", "r"
13

14 position = 20
15 DO
16 LINE INPUT #1 Zeile$
17 REPEAT
18 position = position + 14
19 IF (position > 430) THEN
20 position = 34
21 CLEAR WINDOW
22 WINDOW READ FROM "SQUIX-background"
23 WINDOW READ FROM "Stethoskop"
24 ENDIF
25 TEXT 2, position, LEFT$(Zeile$, 27)
26 Zeile$ = MID$(Zeile$, 28)
27 UNTIL (Zeile$ = "")
28 IF (MOUSEX > -1) BREAK
29 LOOP
30 </ABC>

Listing 13.21: The inputs to the RAW-IP interface are written line by line to the display. The logo from line 5 is transparent so that it
merges with the graphic below.

13.11.4 Interact with the user by catching touches

A cab printer with a X4 motherboard (SQUIX series or newer) has not only a color display for a graphical user
interface, but also a resistive touch sensor. This makes it possible to detect keystrokes on the display. In abc
BASIC the touch sensor is represented in the two commands MOUSEX and MOUSEY. If the screen is not touched,
both have the value -1. If pressure is applied to the display, the two commands return the respective coordinates
of the pressure point.

Try it, the listing 13.22 creates a polyline from the pressure points by using the two commands MOUSEX and
MOUSEY. Do youmanage to draw a house of Santa Claus? Compared to a capacitive touch screen, a resistive
sensor can also be controlled with a glove. Multiple finger gestures like on a smartphone are not necessary on
the display of a printer, so it is not a big deal that a resistive sensor can’t handle it.

The request of the mouse position is sent internally via bus to the display driver. In order not to flood the driver
unnecessarily, the request should only be sent again after a pause of 20 ms or longer.

<ABC>
REM abc window with transparent background logo
OPEN WINDOW 272,444
WINDOW READ FROM "SQUIX-background"
WINDOW READ FROM "Stethoskop"
FONT "Monospace,16"
POKE "fcolor", 255
POKE "lcdy", 36
POKE "lcd", 1

REM listen to input stream
OPEN #1, "/dev/rawip", "r"

position = 20
DO
 LINE INPUT #1 Zeile$
 REPEAT
 position = position + 14
 IF (position > 430) THEN
 position = 34
 CLEAR WINDOW
 WINDOW READ FROM "SQUIX-background"
 WINDOW READ FROM "Stethoskop"
 ENDIF
 TEXT 2, position, LEFT$(Zeile$, 27)
 Zeile$ = MID$(Zeile$, 28)
 UNTIL (Zeile$ = "")
 IF (MOUSEX > -1) BREAK
LOOP
</ABC>

https://en.wikipedia.org/wiki/Touchscreen#Resistive

13 Advanced BASIC Compiler 125

1 <ABC>
2 REM Open graphical display and show message
3 OPEN WINDOW 272, 480
4 POKE "fcolor", 0 // black
5 FILL RECT 0, 440, 272, 480
6 TEXT 5, 5, "Draw the Nikolaus puzzle by touching the screen!"
7 POKE "fcolor", 255 // white
8 FONT "Monospace,20"
9 TEXT 110, 450, "QUIT"

10

11 REM set up drawing color and switch to abc screen
12 POKE "color#1", DEC("0000FF") // blue
13 POKE "fcolor", 1
14 POKE "lcd", 1
15

16 REM continue drawing lines until message box is pressed
17 NEW CURVE
18 REPEAT
19 x = MOUSEX
20 y = MOUSEY
21 IF (x>-1 AND y<440) THEN
22 LINE TO x, y
23 REM wait until finger is released from screen
24 REPEAT PAUSE 0.02 UNTIL (MOUSEX = -1)
25 ENDIF
26 UNTIL (y > 440)
27

28 REM always make a clean exit
29 POKE "lcd", 0
30 CLOSE WINDOW
31 </ABC>

Listing 13.22: Bring a nice house of Santa Claus to the display of a cab printer

13.12 A permanent abc loop

Important with examples like a parser is that abc in a DO… LOOP continuous loop has to work. An abc symbol is
shown in the printer display during this time. The execution can be terminated by pressing the Cancel icon (or
button on older printers).

13.13 The interaction between JScript and abc

So far, we have only ever learned about the interaction between JScript and abc in one direction. From abc,
which should work as far as possible without inparallel processing JScript code, JScript lines are sent to the
interpreter with the command PRINT.

But there is another way to interact. Values can be passed to an abc programworking in the background and the
return value is transferred to the JScript interpreter with the special function [ABC:]

<ABC>
REM Open graphical display and show message
OPEN WINDOW 272, 480
POKE "fcolor", 0 // black
FILL RECT 0, 440, 272, 480
TEXT 5, 5, "Draw the Nikolaus puzzle by touching the screen!"
POKE "fcolor", 255 // white
FONT "Monospace,20"
TEXT 110, 450, "QUIT"

REM set up drawing color and switch to abc screen
POKE "color#1", DEC("0000FF") // blue
POKE "fcolor", 1
POKE "lcd", 1

REM continue drawing lines until message box is pressed
NEW CURVE
REPEAT
 x = MOUSEX
 y = MOUSEY
 IF (x>-1 AND y<440) THEN
 LINE TO x, y
 REM wait until finger is released from screen
 REPEAT PAUSE 0.02 UNTIL (MOUSEX = -1)
 ENDIF
UNTIL (y > 440)

REM always make a clean exit
POKE "lcd", 0
CLOSE WINDOW
</ABC>

126 13 Advanced BASIC Compiler

13.13.1 Just a dream

Now one could assume that the first parameter is a function name, followed by the arguments to be passed to
the function. The value returned by the BASIC command RETURN is then included in the contents of the JScript
line as the result of the special function.

This could look like listing 13.23.

1 <ABC>
2 SUB Umklammern$(Text$)
3 RETURN "<" + Text$ + ">"
4 END SUB
5 </ABC>
6 J
7 S e;0,0,30,32,100
8 H 100,0,T
9 O S

10 T:text;10,10,0,3,5;[SER:1]
11 ; Nice, but this dream will never become true!
12 T 10,20,0,3,5;[ABC:Umklammern$,text]
13 A 5

Listing 13.23: Calling a BASIC sub routine directly from JScript isn’t allowed

Unfortunately, it doesn’t work that way because we have a thinking error in this example. abc is a BASIC
compiler, not an interpreter. It is not possible for the JScript interpreter to jump into the abc code and execute a
subroutine.

13.13.2 The correct way to interact (JGET$ and JPUT)

Sowe have to create an abc programourselves that is constantly looking in the background that data is submitted
by the JScript interpreter. In concrete terms, this is done as in a listing 13.24.

1 <ABC>
2 POKE "bypass", 1
3 DO
4 REPEAT
5 a$ = JGET$
6 UNTIL (a$ <> "")
7 JPUT "<" + a$ + ">"
8 LOOP
9 </ABC>

10

11 J
12 S e;0,0,30,32,1000
13 H 100,0,T
14 O S
15 T:text;10,10,0,3,5;[SER:1]
16 T 10,20,0,3,5;[ABC:text]
17 A 5

Listing 13.24: Interact with JGET$ and JPUT

<ABC>
POKE "bypass", 1
DO
	REPEAT
		a$ = JGET$
	UNTIL (a$ <> "")
	JPUT "<" + a$ + ">"
LOOP
</ABC>

J
S e;0,0,30,32,1000
H 100,0,T
O S
T:text;10,10,0,3,5;[SER:1]
T 10,20,0,3,5;[ABC:text]
A 5

13 Advanced BASIC Compiler 127

There is a function JGET$, which reads the input buffer, which is filled by the JScript special function [ABC:]. After
passing theparameter to thebuffer, the JScript interpreter stopsuntil a return value is received via theabc function
JPUT. Then the JScript interpreter continues its work and uses this return value.

Theonlyparameter allowed for the special function [ABC:] is a field identifier. In this example text.

The use of this special function is also only allowed once. It is not possible to calculate several values or even to
use different calculation functions.

13.14 Error handling

Error handling in abc BASIC is only possible in a very simplified way. There is the command ERROR to abort
the program with an error message. The abort corresponds to a complete reset, which also clears the JScript
buffer. After the ERROR command a character string must follow, that is shown in the printer display. The printer
automatically adds the line number from which the command was called.

Please note that the abc BASIC compiler only receives and numbers the lines after a <ABC> and before the
closing </ABC> from the JScript interpreter. In the example from listing 13.25, line 8 is mentioned at the printer.
It is the eighth line received by the abc BASIC compiler, but line 9 in the JScript code. The resulting message on
the printer touchscreen is shown in figure 13.7.

Figure 13.7: The abc command ERROR forces an error message onto the display

128 13 Advanced BASIC Compiler

1 <ABC>
2 POKE "bypass",1
3 DO
4 REPEAT
5 a$ = JGET$
6 UNTIL (a$ <> "")
7 a = VAL(a$)
8 IF (a = 0) THEN
9 ERROR "Division durch Null!"

10 ENDIF
11 b$ = STR$(1/a)
12 JPUT b$
13 LOOP
14 </ABC>
15

16 J
17 S l1; 0, 0, 68, 71, 100
18 H 100, 0, T
19 O R, S
20 T:Zahl; 10, 10, 0, 3, 5;[SER:5,-1][I]
21 T 10, 20, 0, 3, 5;1 / [Zahl] = [ABC:Zahl]
22 A 10

Listing 13.25: Forcing the printer to stop and display an error message

<ABC>
POKE "bypass",1
DO
	REPEAT
		a$ = JGET$
	UNTIL (a$ <> "")
	a = VAL(a$)
	IF (a = 0) THEN
		ERROR "Division durch Null!"
	ENDIF
	b$ = STR$(1/a)
	JPUT b$
LOOP
</ABC>

J
S l1; 0, 0, 68, 71, 100
H 100, 0, T
O R, S
T:Zahl; 10, 10, 0, 3, 5;[SER:5,-1][I]
T 10, 20, 0, 3, 5;1 / [Zahl] = [ABC:Zahl]
A 10

14 Appendix 129

14 Appendix

The appendix lists some useful tables, sorted by topic. Use the appendix to this guide to look up and support
your thoughts. This is not a complete collection. For a complete listing, please refer to the programming
manual.

You can find the manual on the cab website:

https://cab.de/en/programming

14.1 A typical JScript label in detail

The following tables show the JScript commands of a typical label. Optional parameters are printed in italics
and can be omitted.

The two commands J and A have been omitted. A can also have [PREVIEW] instead of a concrete number as
a parameter, in which case the label is not printed but internally processed as a bitmap. In addition, since
firmware 5.20 you can also give the A command a field name in square brackets as a parameter, then the number
is taken from this “variable”.

The tables are taken from the programming manual, some of them are shortened. In the title line of the tables,
the syntax of the programming manual is used. Optional parameters, which can also be omitted, are enclosed in
curly brackets. You must not use the curly brackets in JScript code, they only indicate what you may omit. If the
brackets include several parameters, they can only be used together or not at all.

For better readability, spaces were used in the syntax representation, which should not be used in the JScript
code. A closing semicolon must not be followed by a space, because immediately after the last semicolon in a
JScript command line follows the content of the text, barcode or the name of a file. If there is a space between
the semicolon and the file name, the file will not be found. Spaces before text move the text by the spaces and
barcodes are corrupted in their content.

https://cab.de/en/programming

130 14 Appendix

Table 14.1: S = Label Size

S {ptype;} xo, yo, ho, dy, wd {,dx,col} {;name}

ptype; Gap sensor type (l0 = reflex below, l1 = transmitted light, l2 = reflex above, e = continuous
material)

xo, Offset in X direction (from the left)
yo, Offset in Y direction (from above)
ho, Label hight
dy, Label start distance (height + gap)
wd Label width
,dx Distance from the edge of the first label to the edge of the next label in the horizontal

direction
,col Number of labels horizontally (columns) (default value = 1)
;name Text that is shown on the printer display

Table 14.2: H = Setting heat level and printing speed

H speed {,h} {,t} {,s} {,Br}

speed The speed as an integer in mm/s (permitted values vary depending on the printer)
,h Heat value in points (from -20 to +20), is added to the printer setting
,t Type: T = transfer, D = direct thermal (default: setup value in the printer’s menu)
,s Ribbon saver on/off (R0=off, R1=on)
,Br Retraction speed of the material in millimeters or in inches e.g. “B100” pulls the media

back at 100 mm/s after printing, provided the printer is set to mm.

14 Appendix 131

Table 14.3: O = setting options

O {Ax=y} {,B} {,Cx} {,D} {,E} {,F} {,Hx} {,J} {,Lx} {,M} {,N} {,P} {,R} {,S} {,Tx} {,U} {,Wy}

Ax=y see table on page 79 (applicator parameters)
,B The printout on the underside of the material is identical to the printout on the top. (Only

for double-sided printers)
,Cx Setting the cutting depth on the perforation knife. Values for x = 0.0 – 10.0 (value that

influences the cutting depth.)
,D Printing or dispensing of labels always with return transport
,E Ignore end of paper (not permitted when operating with continuous material)
,F Discard label position (material is re-synchronized, only useful for double-sided printers)
,Hx Additional offset between the upper and lower printhead in the transport direction. (Only

available for double-sided printers) x = value in millimeters.
,J Printing on demand (manual start via the display or interface)
,Lx Length parameter that is used to compress or stretch the printout on the label. Specifica-

tion in %. Values for x are from -5 to 5.
,M Complete label content is mirrored
,N Negative (inverted) printout of the complete label
,P There is no return transport20, faster printing, white stripe in the label possible
,R Rotate the label by 180°
,S Single label buffer. The next label will only be processed when the current label has been

completely printed.
,Tx Tear off mode – advances a printed label to make it easier to remove. x = optional offset,

positive or negative value in mm or inches.
,U Unique label - suppresses the pause/reprint option so that no label can be accidentally

printed twice.
,Wy Define waiting position after job.

y = n = next label start,
y = i = at the end of the job.
Wi can be defined with an offset. With the dispensing module, the offset is relative to the
dispensing position. This command is only effective in connection with P (Peel Off), is
then also effective for the following jobs and must be reset with OWi0.

20No return transport is not completely correct, within the print order “is printed” if the next label is already known.

132 14 Appendix

Table 14.4: T = Text

T {:name;} x, y, r, font, size {,effects};Text

:name; Creates a reference (field name) to the content of the text in order to be able to use it later
in special functions or the R command

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (integer counterclockwise around the starting point)
font, font number (3 = Swiss 721, 5 = Swiss 721 Bold, 596 = Monospace 821)
size Height of the font (spacing of the p–k lines, see section 4.3.1 Texts)
,b bold
,s slanted (works with every TrueType font)
,i italic (an italic font file must be loaded into the printer’s memory before)
,z Left shear
,l light (a proper font file must be loaded first)
,u unterline
,k Kerning
,v Text with vertical alignment (individual letters rotated by 90°)
,qn Compress or expand text (given in percent). The default value is 100. Possible values:

10-1000
,hn Width of a large “H”, width n in millimeters or inches (float value).
,mn Horizontal text spacing, width n in millimeters or inches (float value).
;text the content (text) to be printed in the given codepage

Table 14.5: W = Textbox

W {:name;} x, y, r, font, size {,effects};Text

:name; Creates a reference (field name) to the content of the text in order to be able to use it later
in special functions or the R command

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (integer counterclockwise around the starting point)
width, width of the box (framing invisible rectangle)
height, height of the box (framing invisible rectangle)
font, font number (3 = Swiss 721, 5 = Swiss 721 Bold, 596 = Monospace 821)
size Height of the font (spacing of the p–k lines, see section 4.3.1 Texts)
;text the content (text) to be positioned as HTML (find the possible HTML-Tags in table 4.1 on

page 36)

14 Appendix 133

Table 14.6: B = Barcode

B {:name;} x, y, r, type{+options}, size;content

:name; Creates a reference to the content of the barcode in order to be able to use it later in special
functions or the R command

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotationswinkel in Grad (nur Vielfache von 90° gegen den Uhrzeigersinn)
type, The barcode type is specified here. Barcodes with uppercase letters are printed with their

plain text line (readable characters usually below the actual barcode), while the plain text
line is suppressed for barcodes in lowercase letters.

size; The size can consist of one or more values, depending on the selected type (height and
width of a line for 1-D codes or size of a module for 2-D codes).

content content of the barcode (look for special rules when creating GS1 barcodes)

You can find an example in the section 4.3.5 Barcodes on page 37. Please refer to the programming manual for
the exact syntax. There you will find the information on all codes on over 100 pages, which would go far beyond
the scope of these instructions.

Table 14.7: I = (auto loaded) Images

I {:name;} x, y, r, mx, my, a ;image name

:name; Creates a reference to the content of the barcode to be able to use it later in special
functions or the R command.

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (only multiples of 90° counterclockwise)
mx, Horizontal magnification factor. Integer value 1-10. Multiplies the image size by this factor

in the x direction.
my, Vertical magnification factor. Integer value 1-10. Multiplies the image size by this factor in

the y direction.
a; Autoload (small a as parameter) allows you to call up an image from the memory card.

The field remains empty if no graphic was found. It is necessary that the values for mx and
my are set when using Autoload.

image name The file name without the ending. The file must be located in the subfolder images.

The autoload option simplifies the use of a graphic. Normally, the graphic would first have to be loaded into the
RAM so that it can then be positioned using the I command. With this original syntax, the parametersmx andmy
are optional.

M l IMG;Logo
I 10,10,0;Logo

The following line does the same as before:

I 10,10,0,1,1,a;Logo

134 14 Appendix

Table 14.8: G. . . ;L: = Lines

G x, y, r; L:length, width {,Start{,End}}

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (integer counterclockwise around the lower, left corner)
L: Defines that we want a line
length, Value in millimeters or inches
width Value in millimeters or inches
,start Line start design (s = rectangular, r = rounded, a = arrow)
,end Line end design (s = rectangular, r = rounded, a = arrow)

Table 14.9: G. . . ;R: = Rectangles

G x,y,r;R:width,height{,hD {,vD}}

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (integer counterclockwise around the lower, left corner)
R: Defines a rectangle as a graphic element
width, Width of the entire rectangle (horizontal edge length)
hight Height of the entire rectangle (vertical edge length)
,hD Horizontal edge thickness (thickness of the line)
,vD Vertical edge thickness (thickness of the line)

Table 14.10: G. . . ;C: = Circles

G x,y,r;C:Radius1{,Radius2{,width}}

x, Position in X-direction (from left)
y, Position in Y-direction (from above)
r, Rotation angle in degrees (integer counterclockwise around the center)
C: Defines a circle as the graphic element
radius1 Horizontal radius
,radius2 Vertical radius
,width. Width of the circle line

Circles (as well as lines or rectangles) can contain other options. For a complete overview, it is worth taking
a look at the programming manual. In the section 4.3.8 Graphical elements (circles, lines and rectangles) on
page 43 youwill find an example for the creative use of circles and ellipses including one Shading as an additional
option.

14 Appendix 135

14.2 Short view on special functions

Table 14.11: Date functions

Function Result

[DATE…] Print current date in national format
[DAY…] Print the day of the month numerically (1–31)
[DAY02…] Same as before, but always two digits
[DOFY…] Print the numeric day of the year as three digits (001–366)
[ISODATE…] Print the ISO date
[ISOORDINAL…] Print the date in ISO ordinal format
[ODATE…] Date with offset
[WDAY…] Print the numeric weekday (0–6)
[wday…] Print weekday name (0 = Sunday)
[wday2…] Print weekday name, 2-digit short (e.g. So)
[wday3…] Print weekday, 3-digit (e.g. Sun)
[ISOWDAY…] Print numerical weekday (1–7)
[WEEK…] Print week number (1–53)
[WEEK02…] Same as before, but always two digits (01–53)
[OWEEK…] Numerical week of year with offset
[mon…] Name of the month, always 3 characters (e.g. Jan)
[month…] Complete name of month (e.g. April)
[MONTH…] The numerical month (1–12)
[MONTH02…] Same as before, but always 2 digits
[YY…] Two digit year (70–38)
[YYYY…] Four digit year (1970-2038)
options DD,MM,YY for an offset in days, months and years, separated from the function name by a

colon

Example:

T 20,50,0,3,4;Mindestens haltbar bis: [MONTH02:0,6]/[YYYY:0,6]

Generates a text with a date in the format “02/2021”, calculatedwith an offset of 6months in the font Swiss 721 Reg-
ularwith4mmfont size. Thevalue02/2021wouldhavebeene.g. calculatedon08/20/2020.

A positive date or time offset always points to the future. Negative values are possible to calculate in the
past.

136 14 Appendix

Table 14.12: Time functions

Function Result

[H12…] Hour in 12-hour format (1–12)
[H24…] Hour in 24-hour format (1–23)
[H012…] Two digit version of the hour in 12-hour format (01–12)
[H024…] Two digit version of the hour in 24-hour format (01–23)
[ISOTIME…] Time in ISO format
[MIN…] Minutes (00–59)
[SEC…] Seconds (00–59)
[TIME…] Time using the matching format to the printer’s setup language
[XM…] am / pm indicator
options HH,MM,SS offset in hours, minutes and seconds

Table 14.13:Math functions

Function Result

[+:op1,op2, …] Addition
[-:op1,op2] Subtraction
[*:op1,op2, …] Multiplication
[/:op1,op2] Division
[%:op1,op2] Modulo
[|:op1,op2] Logical OR (1 if at least one argument is 1, else 0)
[&:op1,op2] Logical AND (0 if at least one argument is 0, else 1)
[<: op1,op2] numerical comparison – less than (1=True, 0=FALSE)
[=:op1,op2] numerical comparison – equal (1=True, 0=FALSE)
[>:op1,op2] numerical comparison – greater than (1=True, 0=FALSE)
[MOD10:x] Calculates and prints the modulo 10 check digit
[MOD36:x] Calculates and prints the modulo 36 check digit
[MOD43:x] Calculates and prints the modulo 43 check digit
[P:name,.,–] Prints the value of the field anduses the characters after the comma for thousands, decimal

sign and as a placeholder if the value has no fraction part
[R:x] Roundingmethod, values for x are n = no rounding (default), u = rounding up, d = rounding

down andm = commercial rounding (DIN 1333)
[==:text1,text2] string comparison (1=TRUE, 0=FALSE)

14 Appendix 137

Table 14.14: User query in standalone operation [?:…]

?: x,y,z{,D}{,Lx}{,Mx}{,R}{,J}

x, Text message to be displayed (max.16 characters)
y, Optional default value that is shown in thedisplay for the first query, otherwise theprevious

display is shown.
z Defines how often the input must be entered.
,D Erases last user input
,Lx Max allowed length of input (x=1–200)
Mx…x Masks the input according to the following scheme (see examples below)

0 = Numeric, decimal separators and characters
1 = Numbers only
2 = Lower case letters only
3 = Lower case letters and numbers
4 = Capital letter
5 = Alphanumeric with capital letters
6 = All letter, lower case and capital
7 = Alphanumeric with lower case and capital letters
8 = All characters allowed at this position
! = Spaces are not allowed if the exclamation mark is after the M option.

,R Repeats the query if a value was not found in the database.
,J Repeats the prompt when the printer asks for the number of labels to print. (A[?,R])

defines a simple query loop for the number of labels to be printed.

The following are some examples of queries in standalone mode. The queries are to be written as special
functions in the content of a text or barcode line.

Prompts for the Artikelnr: and sets the value 7733214 for the next 3 labels to be printed. After that, the input is
cleared, which only appears the first time it is called:

[?:Artikelnr:,7733214,3,D]

Prompts for the Artikelnr: with the preset value of Schraube. The maximum length of the input here is 8
characters:

[?:Artikelnr:,Schraube,,L8]

Asks for thenumberwith thepreset value7733214andmasks the input forpurelynumeric values:

[?:Nummer,7733214,,M1111111]

Prompts for ArtNr? and allows 3 digits and 4 capital letters during input:

[?:ArtNr?,,1,M1114444]

Prompts for Article? with no preset value, input limited to 7 characters and repeat query if database entry is not
found:

[?:Artikel?,,1,M1111111,R,D]

Prompts forArticle? withpreset value22003andmasks the input for 5digitswithout spaces:

138 14 Appendix

[?:Artikel?,22003,,,L5,M!11111]

Example of a simple loop:

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 T 10, 15, 0, 3, 10;[SER:1]
5 ; Diese Abfrage wird nur einmal angezeigt
6 T 10, 30, 0, 3, 10;[?:Eingabe 1:]
7 ; Diese Abfrage wird wiederholt
8 T 10, 45, 0, 3, 10;[?:Eingabe 2:,,,J]
9 A [?,R]

When the label is finished, displays thepromptagainuntil theprint job is terminatedbyCancel.

14.3 Error codes for the Esc s command

If you send Esc s to the printer, you get a 9 character status back. The second character is the error code. The error
code should always be a “-” (minus character), that indicates we have no error at all.

Table 14.15: Error codes for the Esc s command

Error code Cause

- No error
a Applicator error: Applicator did not reach the upper position
b Applicator error: Applicator did not reach the lower position
c Applicator error: Vacuum plate is empty
d Applicator error: Label not deposit
e Applicator error: Host stop/error
f Applicator error: Reflective sensor blocked
g Applicator error: Tamp pad 90° error
h Applicator error: Tamp pad 0° error
i Applicator error: Table not in front position
j Applicator error: Table not in rear position
k Applicator error: Head liftet
l Applicator error: Head down
m Scan result negative
n Network error
o Pressure error
p Wrong media
r RFID - error
s System error (during boot up check)
u USB error
x Stacker full - printer goes on Pause (only with a specified cutter)
B abc error, caused by the ERROR command (example on page 128)
U User error, e.g. caused by the abc code

POKE "usererror","Attention: User defined error message!"

15 Solutions to some exercises 139

15 Solutions to some exercises

The exercises in this manual are used in the JScript training putting what you have learned into practice. We
have not printed all exercises from the training in this manual and have not published a solution for all exercises.
If you have any questions about individual exercises or sections of this manual, please contact our training or
support team by e-mail or phone. You can find the contact details on our website.

https://www.cab.de/en/information/contact/

Solution 4.1 Three at one stroke � S. 25

Since your label dimensions were not known when creating this guide, we assume they would be 50 mm
wide, 30 mm high and the gap would be 3 mm.

1 J
2 S 0, 0, 30, 33, 50
3 A 3

Solution 4.2 Error in label size � S. 25

Assuming your label would be 50mmwide, 30mmhigh and the gapwould be 3mm. Then twoparameters
have to be changed to enlarge the label hight by 20 mm.

1 J
2 S 0, 0, 50, 53, 50
3 A 3

Now apparently 6 labels are printed. But this is not quite correct. If you specify a label height to the printer
with the label size command, no attention is paid to gaps during this distance. So the printer passes the
gap by the label height that is 20 mm too long and only then starts to search for the next label. You can
easily try this. Add the following line before the line “A 3” (even if the contents may not mean anything to
you):

T 5, 5, 0, 3, 3;Hello World!

You can now see that in fact every second label is skipped without being printed. There are three labels,
but the height was given wrong.

Solution 4.3 Set a print area within the label � S. 26

The page definition in the JScript code must be as follows to limit the print area according to Figure 4.2 at
page 26.

S l1; 9, 8, 35, 53, 63

https://www.cab.de/en/information/contact/

140 15 Solutions to some exercises

Solution 4.6 Headstand of the labels � S. 28

If the line “O R” is omitted, the label is not printed rotated by 180°. On table printers the text is then upside
down. So why is the normal state not like with the option? In the late 1990’s printers printed the label
upside down. On these printers, the text was still readable without the option to rotate, even without
standing upside down. Today, however, printers output the label forward, so the option “R” should usually
always be selected. The cab printers do not have a setting “Rotate all labels 180°”, you have to specify this
option with each label. If you use cabLabel for label design, this option can be set once for the printer and
is automatically applied to each label.

Solution 4.7 Pretty weird � S. 30

Since when this PDF was created, it was not known how big your label is and what your name is, here is
an example of the training labels.

1 m m
2 J
3 ; The training labels are 100 mm wide and 68 mm high
4 S l1; 0, 0, 68, 71, 100
5 ; Because of the rotation, the base point must be 7 mm from the edge
6 T 7, 65, 29, 3, 19, n;Fritz Fischer
7 A 1

Listing 15.1: Texts can also be printed crossways

m m
J
; The training labels are 100 mm wide and 68 mm high
S l1; 0, 0, 68, 71, 100
; Because of the rotation, the base point must be 7 mm from the edge
T 7, 65, 29, 3, 19, n;Fritz Fischer
A 1

15 Solutions to some exercises 141

Solution 4.8 Handwritten name badges � S. 32

1 m m
2

3 ; load the font from the default storage memory into RAM
4 M l FNT;IndieFlower-Regular
5

6 J
7 S l1; 0, 0, 30, 33, 100
8

9 ; assign font no. 13
10 F 13;Indie Flower
11

12 ; ... and use this font in the text elements
13 T 5, 15, 0, 13, 12;Fritz Fischer
14 T 5, 25, 0, 13, 5;Fischers Frischfisch GmbH
15

16 A 1

Listing 15.2: The file name was used for the load command and the name of the font family for the font number assignment.
If you do not know the name of the font family, you can also specify the file name of the Regular font.

Solution 4.11 The house of Santa Claus � S. 44

You can draw Santa’s house with only four “G” commands:

1 m m
2 J
3 S l1; 0, 0, 68, 71, 100
4 H 100, 0
5 O R
6

7 ; large square (base)
8 G 40, 30, 0;R: 20, 20, 0.14, 0.14
9

10 ; small square (roof)
11 G 40, 30, 45;R: 14.14, 14.14, 0.14, 0.14
12

13 ; two small sides of the lowest triangle
14 G 50, 40, -45;L: 14.14, 0.14
15 G 50, 40, 225;L: 14.14, 0.14
16

17 A 1

Listing 15.3: The house of St. Nicholas can also be drawn as a structure of two squares and a triangle. However, since there is
no triangle command, a total of four graphic commands are required.

m m

; load the font from the default storage memory into RAM
M l FNT;IndieFlower-Regular

J
S l1; 0, 0, 30, 33, 100

; assign font no. 13
F 13;Indie Flower

; ... and use this font in the text elements
T 5, 15, 0, 13, 12;Fritz Fischer
T 5, 25, 0, 13, 5;Fischers Frischfisch GmbH

A 1

m m
J
S l1; 0, 0, 68, 71, 100
H 100, 0
O R

; large square (base)
G 40, 30, 0;R: 20, 20, 0.14, 0.14

; small square (roof)
G 40, 30, 45;R: 14.14, 14.14, 0.14, 0.14

; two small sides of the lowest triangle
G 50, 40, -45;L: 14.14, 0.14
G 50, 40, 225;L: 14.14, 0.14

A 1

142 15 Solutions to some exercises

Solution 5.1 Handwritten name badges in stand-alone operation � S. 55

The JScript file from the exercise “Handwritten name badges” must be supplemented by the special
function for dialog input. At the end of the file, the command Awithout parameters is used to print an
unlimited number of labels. If the third parameter in the dialog function is a 1, the system prompts for a
new parameter after each print.

1 m m
2 M l FNT;IndieFlower-Regular
3 J
4 S l1; 0, 0, 30, 33, 100
5 F 13;Indie Flower
6 ; Third parameter for re-query after each label
7 T 5, 15, 0, 13, 12;[?:Vorname und Name,Fritz Fischer,1]
8 T 5, 25, 0, 13, 5;[?:Firmenname,Fischers Frischfisch GmbH,1]
9 ; Unlimited printing leads to re-query the values each time

10 A

Listing 15.4: The additional parameter repeats the query for each print

Solution 5.2 Complex numbering of packages � S. 56

And this is how a solution could look like to apply two labels to all four cartons.

1 m m
2 J
3 S l1; 0, 0, 10, 13, 100
4 H 150, 0
5 O R
6 T 15, 9, 0, 5, 9;[SER: 01, 5, 2] bis [SER: 05, 5, 2] von 20
7 A 8

Listing 15.5: Two labels for the outer boxes of each shipment of goods

m m
M l FNT;IndieFlower-Regular
J
S l1; 0, 0, 30, 33, 100
F 13;Indie Flower
; Third parameter for re-query after each label
T 5, 15, 0, 13, 12;[?:Vorname und Name,Fritz Fischer,1]
T 5, 25, 0, 13, 5;[?:Firmenname,Fischers Frischfisch GmbH,1]
; Unlimited printing leads to re-query the values each time
A

m m
J
S l1; 0, 0, 10, 13, 100
H 150, 0
O R
T 15, 9, 0, 5, 9;[SER: 01, 5, 2] bis [SER: 05, 5, 2] von 20
A 8

15 Solutions to some exercises 143

Solution 5.3 Variable number of packages � S. 59

In the exercise 5.2, two labels with the dimensions 100 mmwidth and 10 mm height per box are required.

1 m m
2 J
3 S l1;0,0,10,13,100
4 H 150,0
5 O R
6

7 ; query dialog
8 T:Gesamt;0,0,0,3,3;[?:Anzahl Packstücke?,20][I]
9 T:JeKarton;0,0,0,3,3;[?:Stücke je Karton?,5][I]

10

11 ; define counter
12 T:KartonNr;0,0,0,3,3;[SER:00000,1,2][I]
13

14 ; do the calculation
15 T:Hilfsvariable;0,0,0,3,3;[*:KartonNr,JeKarton][D:1,0][I]
16 T:VON;0,0,0,3,3;[+:Hilfsvariable,1][D:1,0][I]
17 T:BIS;0,0,0,3,3;[+:Hilfsvariable,JeKarton][D:1,0][I]
18

19 ; print onto the label
20 T 15,9,0,5,9;[VON] bis [BIS] von [Gesamt]
21

22 ; calculate and print the number of labels required
23 T:AnzahlKartons;0,0,0,3,3;[/:Gesamt,JeKarton][D:1,0][I]
24 T:AnzahlEtiketten;0,0,0,3,3;[*:AnzahlKartons,2][D:1,0][I]
25 A [AnzahlEtiketten]

Listing 15.6: Labeling with variable number of packages

To calculate with integers, the special function [D:1,0] was added after each calculation, which
formats the result with at least one digit before but no decimal place. The solution thus found always
works if the number of units per box is an integer divisor of the total number, i.e., the last box can be filled
completely. With the code, test packing 17 pieces at 4 pieces per box. Better would be (the first 13 lines
are identical):

14 ; do a more advanced calculation
15 T:Hilfsvariable;0,0,0,3,3;[*:KartonNr,JeKarton][D:1,0][I]
16 T:VON;0,0,0,3,3;[+:Hilfsvariable,1][D:1,0][I]
17 T:BIS;0,0,0,3,3;[+:Hilfsvariable,JeKarton][D:1,0][I]
18 T:ÜberBIS;0,0,0,3,3;[>:BIS,Gesamt][I]
19

20 ; print onto the label
21 T 15,9,0,5,9;[VON] bis [BIS] von [Gesamt][I:ÜberBIS]
22 T 15,9,0,5,9;[VON] bis [Gesamt] von [Gesamt][I:!ÜberBIS]
23

24 ; calculate and print the number of labels required more clever
25 T:AnzahlVolleKartons;0,0,0,3,3;[/:Gesamt,JeKarton][D:1,0][I]
26 T:Krümelchen;0,0,0,3,3;[%:Gesamt,JeKarton][D:1,0][I]
27 T:Zusatzkarton;0,0,0,3,3;[>:Krümelchen,0][I]
28 T:AnzahlAlleKartons;0,0,0,3,3;[+:AnzahlVolleKartons,Zusatzkarton][D:1,0][I]
29 T:AnzahlEtiketten;0,0,0,3,3;[*:AnzahlAlleKartons,2][D:1,0][I]
30 A [AnzahlEtiketten]

Listing 15.7: Extended version for a variable number of packages

m m
J
S l1;0,0,10,13,100
H 150,0
O R

; query dialog
T:Gesamt;0,0,0,3,3;[?:Anzahl Packstücke?,20][I]
T:JeKarton;0,0,0,3,3;[?:Stücke je Karton?,5][I]

; define counter
T:KartonNr;0,0,0,3,3;[SER:00000,1,2][I]

; do the calculation
T:Hilfsvariable;0,0,0,3,3;[*:KartonNr,JeKarton][D:1,0][I]
T:VON;0,0,0,3,3;[+:Hilfsvariable,1][D:1,0][I]
T:BIS;0,0,0,3,3;[+:Hilfsvariable,JeKarton][D:1,0][I]

; print onto the label
T 15,9,0,5,9;[VON] bis [BIS] von [Gesamt]

; calculate and print the number of labels required
T:AnzahlKartons;0,0,0,3,3;[/:Gesamt,JeKarton][D:1,0][I]
T:AnzahlEtiketten;0,0,0,3,3;[*:AnzahlKartons,2][D:1,0][I]
A [AnzahlEtiketten]

m m
J
S l1;0,0,10,13,100
H 150,0
O R

; query dialog
T:Gesamt;0,0,0,3,3;[?:Anzahl Packstücke?,20][I]
T:JeKarton;0,0,0,3,3;[?:Stücke je Karton?,5][I]

; define counter
T:KartonNr;0,0,0,3,3;[SER:00000,1,2][I]

; do a more advanced calculation
T:Hilfsvariable;0,0,0,3,3;[*:KartonNr,JeKarton][D:1,0][I]
T:VON;0,0,0,3,3;[+:Hilfsvariable,1][D:1,0][I]
T:BIS;0,0,0,3,3;[+:Hilfsvariable,JeKarton][D:1,0][I]
T:ÜberBIS;0,0,0,3,3;[>:BIS,Gesamt][I]

; print onto the label
T 15,9,0,5,9;[VON] bis [BIS] von [Gesamt][I:ÜberBIS]
T 15,9,0,5,9;[VON] bis [Gesamt] von [Gesamt][I:!ÜberBIS]

; calculate and print the number of labels required more clever
T:AnzahlVolleKartons;0,0,0,3,3;[/:Gesamt,JeKarton][D:1,0][I]
T:Krümelchen;0,0,0,3,3;[%:Gesamt,JeKarton][D:1,0][I]
T:Zusatzkarton;0,0,0,3,3;[>:Krümelchen,0][I]
T:AnzahlAlleKartons;0,0,0,3,3;[+:AnzahlVolleKartons,Zusatzkarton][D:1,0][I]
T:AnzahlEtiketten;0,0,0,3,3;[*:AnzahlAlleKartons,2][D:1,0][I]
A [AnzahlEtiketten]

144 15 Solutions to some exercises

Solution 5.4 Avoid errors in multi-step calculations � S. 61

The problem lies in the formatting of the intermediate results. If this is not specified, JScript always
chooses a display with two decimal places. This would correspond to the special function [D:1,2].

We can start here and provide line 16 with more decimal places accordingly.

16 T:Einzelpreis; 0, 0, 0, 3, 3;[I][/:GPZG,AnzahlZG][D:1,8]

15 Solutions to some exercises 145

Solution 6.1 A CSV file as protocol of all printouts � S. 66

Here is a possible solution for a running event.

1 ; usual header
2 m m
3 J
4 S l1;0,0,68,71,100
5 H 150,0
6

7 ; define a log file
8 E LOG;Spendenlauf
9

10 ; query data from a display dialog
11 T:Vorname;0,0,0,3,3;[?:Vorname][I]
12 T:Name;0,0,0,3,3;[?:Name][I]
13 T:Straße;0,0,0,3,3;[?:Straße][I]
14 T:HNR;0,0,0,3,3;[?:Hausnummer][I]
15 T:PLZ;0,0,0,3,3;[?:Postleitzahl][I]
16 T:Ort;0,0,0,3,3;[?:Wohnort][I]
17 T:Anonym;0,0,0,3,3;[?:Nachname kürzen? (ja/nein),nein][I]
18

19 ; logic for shortening the name (string comparison)
20 T:Kürzen;0,0,0,3,3;[==:Anonym,ja][I]
21

22 ; generate start number
23 T:AlteNummer;0,0,0,3,3;[RUSER][I]
24 T:Startnummer;0,0,0,3,3;[+:1,AlteNummer][D:1,0][WUSER][I]
25

26 ; write data into log file
27 T 0,0,0,3,3;[Startnummer],[Vorname],[Name],[Straße],[HNR],[PLZ],[Ort],[DATE],[TIME…

][WLOG][I]
28

29 ; print the label
30 T 0,20,0,3,10;[Vorname] [Name][J:c100][I:Kürzen]
31 T 0,20,0,3,10;[Vorname] [Name,1,1].[J:c100][I:!Kürzen]
32 T 0,55,0,5,40;[Startnummer][J:c100]
33

34 ; repeat in an infinite loop, reloading this JScript file
35 A 1
36 M r

Listing 15.8: Label creates a CSV file of all runners

; usual header
m m
J
S l1;0,0,68,71,100
H 150,0

; define a log file
E LOG;Spendenlauf

; query data from a display dialog
T:Vorname;0,0,0,3,3;[?:Vorname][I]
T:Name;0,0,0,3,3;[?:Name][I]
T:Straße;0,0,0,3,3;[?:Straße][I]
T:HNR;0,0,0,3,3;[?:Hausnummer][I]
T:PLZ;0,0,0,3,3;[?:Postleitzahl][I]
T:Ort;0,0,0,3,3;[?:Wohnort][I]
T:Anonym;0,0,0,3,3;[?:Nachname kürzen? (ja/nein),nein][I]

; logic for shortening the name (string comparison)
T:Kürzen;0,0,0,3,3;[==:Anonym,ja][I]

; generate start number
T:AlteNummer;0,0,0,3,3;[RUSER][I]
T:Startnummer;0,0,0,3,3;[+:1,AlteNummer][D:1,0][WUSER][I]

; write data into log file
T 0,0,0,3,3;[Startnummer],[Vorname],[Name],[Straße],[HNR],[PLZ],[Ort],[DATE],[TIME][WLOG][I]

; print the label
T 0,20,0,3,10;[Vorname] [Name][J:c100][I:Kürzen]
T 0,20,0,3,10;[Vorname] [Name,1,1].[J:c100][I:!Kürzen]
T 0,55,0,5,40;[Startnummer][J:c100]

; repeat in an infinite loop, reloading this JScript file
A 1
M r

146 15 Solutions to some exercises

Solution 6.2 The cherry on top for the JScript expert � S. 66

First of all, the solution already worked with the user memory. This memory is technically located in
the RAM of the buffered clock. Even when the printer is switched off, voltage is applied there so that the
clock chip can keep the time running. Therefore, the memorized value of the last start number is already
protected against accidentally switching off the printer.

It becomes more complicated with the automatic font size adjustment. Here (within the scope of this
manual) only a single distinction between two sizes is to be made in order not to make the process too
complex. The first 18 lines are identical to the previous solution.

19 ; logic for shortening the name (string comparison)
20 T:Kürzen;0,0,0,3,3;[==:Anonym,ja][I]
21 T:Namensliste;0,0,0,3,3;[Vorname] [Name][U:GS][Vorname] [Name,1,1].[I]
22 T:Namenswahl;0,0,0,3,3;[+:Kürzen,1][I]
23

24 ; generate start number
25 T:AlteNummer;0,0,0,3,3;[RUSER][I]
26 T:Startnummer;0,0,0,3,3;[+:1,AlteNummer][D:1,0][WUSER][I]
27

28 ; write data into log file
29 T 0,0,0,3,3;[Startnummer],[Vorname],[Name],[Straße],[HNR],[PLZ],[Ort],[DATE],[TIME…

][WLOG][I]
30

31 ; is there enough space for font height 10 (max. 22 characters)?
32 T:VollerName;0,0,0,3,3;[SPLIT:Namensliste,Namenswahl][I]
33 T:Zeichenlänge;0,0,0,3,3;[LEN:VollerName][I]
34 T:ZuLang;0,0,0,3,3;[>:Zeichenlänge,22][I]
35

36 ; print the label (compress names to 85% or 50% character width)
37 T 0,20,0,3,10,q85;[VollerName][J:c100][I:ZuLang]
38 T 0,20,0,3,8,q50;[VollerName][J:c100][I:!ZuLang]
39 T 0,55,0,5,40;[Startnummer][J:c100]
40

41 ; repeat in an infinite loop, reloading this JScript file
42 A 1
43 M r

Listing 15.9: Extended version of the donation run label

The decisive factor is that only one conditional visibility can be used per text element. Therefore, both
decisions (last name shortened and string length) must be combined to one decision about the font
height. For this purpose, a list is generated which contains both the full name and the anonymized name.
The evaluation of the user input (field name “Anonym”) is then used to access the first or second element
of the list.

; üblicher Vorspann
m m
J
S l1;0,0,68,71,100
H 150,0

; Logdatei definieren
E LOG;Spendenlauf

; query data from a display dialog
T:Vorname;0,0,0,3,3;[?:Vorname][I]
T:Name;0,0,0,3,3;[?:Name][I]
T:Straße;0,0,0,3,3;[?:Straße][I]
T:HNR;0,0,0,3,3;[?:Hausnummer][I]
T:PLZ;0,0,0,3,3;[?:Postleitzahl][I]
T:Ort;0,0,0,3,3;[?:Wohnort][I]
T:Anonym;0,0,0,3,3;[?:Nachname kürzen? (ja/nein),nein][I]

; logic for shortening the name (string comparison)
T:Kürzen;0,0,0,3,3;[==:Anonym,ja][I]
T:Namensliste;0,0,0,3,3;[Vorname] [Name][U:GS][Vorname] [Name,1,1].[I]
T:Namenswahl;0,0,0,3,3;[+:Kürzen,1][I]

; generate start number
T:AlteNummer;0,0,0,3,3;[RUSER][I]
T:Startnummer;0,0,0,3,3;[+:1,AlteNummer][D:1,0][WUSER][I]

; write data into log file
T 0,0,0,3,3;[Startnummer],[Vorname],[Name],[Straße],[HNR],[PLZ],[Ort],[DATE],[TIME][WLOG][I]

; is there enough space for font height 10 (max. 22 characters)?
T:VollerName;0,0,0,3,3;[SPLIT:Namensliste,Namenswahl][I]
T:Zeichenlänge;0,0,0,3,3;[LEN:VollerName][I]
T:ZuLang;0,0,0,3,3;[>:Zeichenlänge,22][I]

; print the label (compress names to 85% or 50% character width)
T 0,20,0,3,10,q85;[VollerName][J:c100][I:ZuLang]
T 0,20,0,3,8,q50;[VollerName][J:c100][I:!ZuLang]
T 0,55,0,5,40;[Startnummer][J:c100]

; repeat in an infinite loop, reloading this JScript file
A 1
M r

147

	1 Basics
	1.1 Why JScript
	1.2 How to read this manual
	1.3 Download the code samples and cabLabel S3
	1.4 What else to read
	1.5 JScript-enabled devices since 1995
	1.6 Editing JScript files under Windows
	1.7 How we support you

	2 Communication with the printer
	2.1 Use USB or SD-card storage media on printer
	2.2 Appoint a memory type as default memory
	2.3 Create the appropriate label jobs
	2.4 Call up label jobs at the printer
	2.5 Do not use the USB cable
	2.6 Connection via a TCP/IP network
	2.7 FTP for file transfer
	2.8 FTP for immediate printing without saving
	2.9 Communication in Production
	2.10 Direct communication on port 9100
	2.11 Accessing a file server with WebDAV
	2.12 Industry 4.0 with OPC UA

	3 Basic structure of JScript
	3.1 JScript as direct communication with the printer
	3.2 Lower case letters
	3.3 Capital letters
	3.4 Special functions
	3.5 Comments
	3.6 Make JScript Code Readable
	3.7 Escape commands
	3.8 abc Programming

	4 The typical structure of a label
	4.1 A simple minimalistic label
	4.2 Useful template for a blank label
	4.2.1 Units of measurement
	4.2.2 Job start
	4.2.3 Size of label
	4.2.4 Speed and heat
	4.2.5 Using options

	4.3 Static objects
	4.3.1 Texts
	4.3.2 Using your own fonts
	4.3.3 Textboxes
	4.3.4 Hyphenation in Text Boxes
	4.3.5 Barcodes
	4.3.6 Images
	4.3.7 Images as embedded ASCII data
	4.3.8 Graphical elements (circles, lines and rectangles)

	4.4 Design the label dynamically
	4.4.1 Referencing content
	4.4.2 Reusing content
	4.4.3 Calling templates from storage
	4.4.4 Fill in new content

	4.5 Summary or J SHOW BIG A

	5 Special functions
	5.1 Syntax of the special functions
	5.1.1 Include in square brackets
	5.1.2 Pass function parameters
	5.1.3 Use field names as special function
	5.1.4 No nestings

	5.2 Hiding elements
	5.2.1 Conditional visibility

	5.3 Ask the operator
	5.4 Dynamic date and time functions
	5.5 Adding a time offset
	5.6 Using counter
	5.7 Remember the counter value
	5.8 Calculations and comparisons
	5.9 Format strings or numbers
	5.10 Avoid rounding errors
	5.11 Inserting UNICODE characters
	5.12 Single buffer mode

	6 Using the different memories
	6.1 The useful user memory
	6.2 The "I have finished!" info memory
	6.3 Using a file to store a value
	6.3.1 Using a TMP file
	6.3.2 Filling a LOG file

	7 The most common Escape commands
	7.1 Interrupt the printing process (ESCp1 and ESCp0)
	7.2 When nothing works at all (ESCt and ESC!ESC!)
	7.3 Query status (ESCs and ESCz)
	7.4 Reading from the information memory (ESCi)
	7.5 Start signal (ESCg)
	7.6 Trigger the I/O interface (ESCxin)
	7.7 Reading the I/O interface (ESCxout)
	7.8 Outlook: Printer control in the industry 4.0 age with OPC UA

	8 Access to databases
	8.1 Connecting to the cab Windows service
	8.2 Stand alone sulution: using a local SQLite file
	8.3 Get a value from a database
	8.4 Splitting the database response
	8.5 Write back to a database

	9 More than just printing
	9.1 Dispensing labels
	9.2 Tear-off mode
	9.3 Automatic retraction
	9.4 Ribbonsaver
	9.5 Cutting Labels
	9.6 Using an Applicator
	9.6.1 Set parameters for an applicator
	9.6.2 Print and apply or apply and print?

	10 Diagnostic options
	10.1 Monitor Mode
	10.2 Log incoming data into a file
	10.3 Preview a label without printing

	11 Barcodes in global trade
	11.1 Data integraty for barcodes
	11.1.1 Error detection by a check digit shown on the GTIN
	11.1.2 Error correction in QR and Datamatrix codes with the Reed-Solomon method

	11.2 GS1 Data Structure
	11.2.1 Floating numbers as a content of an AI

	11.3 Barcode types for GS1 data

	12 Best practice examples
	12.1 Single digit month, shift identification and daily counter reset
	12.2 Print vouchers
	12.3 Printing data from a CSV file

	13 Advanced BASIC Compiler
	13.1 This is not a BASIC manual
	13.2 Either JScript or abc
	13.3 Comments in abc
	13.4 The PRINT command
	13.5 Conditional tasks and jumps
	13.5.1 IF–THEN–ELSIF–ELSE–ENDIF
	13.5.2 GOTO and GOSUB

	13.6 Loops
	13.6.1 FOR–NEXT
	13.6.2 DO–LOOP
	13.6.3 WHILE–WEND
	13.6.4 REPEAT–UNTIL

	13.7 Subroutines (functions)
	13.7.1 Using a pointer to an array as an argument of a subroutine

	13.8 String operations
	13.8.1 num = SPLIT(string$, return_array$(), dividing_character$)
	13.8.2 num = TOKEN(string$, array$(), separator$)
	13.8.3 Handling sub strings with LEFT$, MID$ and RIGHT$
	13.8.4 pos = INSTR(string$, search_pattern$)
	13.8.5 Sweeping blank spaces at the beginning and end of a string
	13.8.6 More commands to manipulate strings

	13.9 Read and write on the interfaces
	13.10 Creating a parser
	13.11 Writing onto the graphical display
	13.11.1 Example abc program: global climate warming up
	13.11.2 Rectangles and lines on the display
	13.11.3 Example: a transparent onscreen logo
	13.11.4 Interact with the user by catching touches

	13.12 A permanent abc loop
	13.13 The interaction between JScript and abc
	13.13.1 Just a dream
	13.13.2 The correct way to interact (JGET$ and JPUT)

	13.14 Error handling

	14 Appendix
	14.1 A typical JScript label in detail
	14.2 Short view on special functions
	14.3 Error codes for the ESCs command

	15 Solutions to some exercises

